

District: Astoria Date: January 29, 2014

cost summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$4,186,355.88	\$224,507.14	\$4,410,863.02
		Project Work:	\$(365,628.00)
		Advertised Value:	\$4,045,235.02

1/29/14

District: Astoria Date: January 29, 2014

timber description

Location: Portions of Sections 23, 24, and 26, T6N, R7W, W.M., Clatsop County, Oregon.

Stand Stocking: 60%

SpecieName	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	25	0	97
Western Hemlock / Fir	18	0	97
Sitka Spruce	15	0	97
Alder (Red)	17	0	95

Volume by Grade	2S	3S	4S	Camprun	Total
Douglas - Fir	7,128	910	78	0	8,116
Western Hemlock / Fir	688	254	193	0	1,135
Sitka Spruce	8	2	4	0	14
Alder (Red)	0	0	0	598	598
Total	7,824	1,166	275	598	9,863

"STEWARDSHIP IN FORESTRY"

District: Astoria Date: January 29, 2014

comments: Pond Values Used: 4th Quarter Calendar Year 2013.

Expected Log Markets: Warrenton, OR; Mist, OR; Clatskanie, OR; Tillamook, OR; Forest Grove, OR.

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$848.22/MBF = \$1,050/MBF - \$201.78/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$4.00/Gallon

HAULING COST ALLOWANCE
Hauling costs squivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added):
100% Branding and Painting: \$1/MBF x 9,863 MBF = \$9,863
Maching Washing for Noxious Weeds Compliance = \$3,000
Slash Piling = \$9,495
TOTAL Other Costs (with Profit & Risk to be added) = \$22,358

Other Costs (No Profit & Risk added): None.

"STEWARDSHIP IN FORESTRY"

District: Astoria Date: January 29, 2014

logging conditions

combination#: 1 Douglas - Fir 34.00%

Western Hemlock / Fir 34.00% Sitka Spruce 34.00% Alder (Red) 34.00%

yarding distance: Medium (800 ft) downhill yarding: No logging system: Shovel Process: Feller Buncher

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 7.0 bd. ft / load: 4.000

cost / mbf: \$51.38

machines: Feller Buncher w/ Delimber

combination#: 2 Douglas - Fir 2.00%

Western Hemlock / Fir 2.00% Sitka Spruce 2.00% Alder (Red) 2.00%

yarding distance: Short (400 ft) downhill yarding: No logging system: Cable: Medium Tower >40 - <70 Process: Stroke Delimber

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 9.0 bd. ft / load: 4,000

cost / mbf: \$92.89

machines: Log Loader (A)

Stroke Delimber (A)
Tower Yarder (Medium)

combination#: 3 Douglas - Fir 58.00% Western Hemlock / Fir 58.00%

 Sitka Spruce
 58.00%

 Alder (Red)
 58.00%

yarding distance: Medium (800 ft) downhill yarding: No

logging system: Track Skidder Process: Manual Falling/Delimbing

tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 8.0 bd. ft / load: 4,000

cost / mbf: \$107.51

machines: Log Loader (B)

Track Skidder

combination#: 4 Douglas - Fir 6.00%

Western Hemlock / Fir 6.00% Sitka Spruce 6.00% Alder (Red) 6.00%

"STEWARDSHIP IN FORESTRY"

machines:

District: Astoria Date: January 29, 2014

yarding distance: Medium (800 ft) downhill yarding: No

logging system: Cable: Medium Tower >40 - <70 Process: Manual Falling/Delimbing

tree size: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 6.0 bd. ft / load: 4,000

cost / mbf: \$144.17

Log Loader (A) Tower Yarder (Medium)

District: Astoria Date: January 29, 2014

logging costs

Operating Seasons: 2.00 Profit Risk: 12.00%

Project Costs: \$365,628.00 **Other Costs (P/R):** \$22,358.00

Slash Disposal: \$0.00 Other Costs: \$0.00

Miles of Road

Road Maintenance: \$2.44

Dirt	Rock (Contractor)	Rock (State)	Paved
0.0	0.0	0.0	0.0

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.5
Western Hemlock / Fir	\$0.00	3.0	4.5
Sitka Spruce	\$0.00	1.0	4.5
Alder (Red)	\$0.00	2.0	3.5

District: Astoria Date: January 29, 2014

logging costs breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling	Other	Total
Douglas -	Fir								
\$90.33			\$79.70	\$2.27	\$21.08	\$0.00	\$5.00	\$0.00	\$201.78
Western F	lemlock /	Fir							
\$90.33	\$2.51	\$0.89	\$53.14	\$2.27	\$17.90	\$0.00	\$5.00	\$0.00	\$172.04
Sitka Spru	ıce								
\$90.33			\$159.40	\$2.27	\$30.65	\$0.00	\$5.00	\$0.00	\$291.05
Alder (Re	Alder (Red)								
\$90.33	\$2.56	\$0.89	\$104.46	\$2.27	\$24.06	\$0.00	\$5.00	\$0.00	\$229.57

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$669.99	\$468.21	\$0.00
Western Hemlock / Fir	\$0.00	\$509.36	\$337.32	\$0.00
Sitka Spruce	\$0.00	\$541.43	\$250.38	\$0.00
Alder (Red)	\$0.00	\$605.00	\$375.43	\$0.00

1/29/14 7

January 29, 2014 **Astoria** Date: District:

summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	0	\$0.00	\$0.00
Western Hemlock / Fir	0	\$0.00	\$0.00
Sitka Spruce	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	8,116	\$468.21	\$3,799,992.36
Western Hemlock / Fir	1,135	\$337.32	\$382,858.20
Sitka Spruce	14	\$250.38	\$3,505.32
Alder (Red)	598	\$375.43	\$224,507.14

Gross Timber Sale Value

\$4,410,863.02 Recovery:

Prepared by: Jenny Johnson **Phone:** 503-325-5451

1/29/14 8

			Site Prep A	ppraisal			
			Vegetation Type/Zone	Vegetation Type/Zone Code	Production Rate (hr/ac)	Estimated Piles/Acre	
Sale Number:	341-14-35		Doug-fir	Α	1.0	3.0	
Sale Name:	Jarvie Combo		Hemlock/Fir	В	1.5	4.5	
Date:	09/17/2013		Hemlock/Spruce	С	2.0	6.0	
			Hemlock	D	2.0	6.0	
			Conifer/Hardwood	E	1.5	4.5	
				Estimated			
		Veg	Ground Based	Piling		Total	
Sale Area	Harvest Type	Type/Zone	Yarding Acres	Hours/Area	Cost/Hour	Cost/Area	
1	MC	Α	95	40	\$155.00	\$6,200.00	
						Sub Total =	\$6,20
	Number of						
	Landings to	Cost/Landing		Number of In-	Material	Total	
Sale Area	be Piled	Pile*	Total Cost/Area	Unit Piles	Cost/Pile	Cost/Area	
1	1	\$465.00	\$465.00	285	\$5.00	\$1,425.00	
Cost includes se	parating firewo	od				Sub Total =	\$1,8
Move-In	Number of	Total Move-In					
Allowance	Move-In's	Allowance					
\$1,406.00	1	\$1,406.00				Sub Total =	\$1,40

.

SUMMARY OF ALL PROJECT COSTS

SALE NAME:	Jarvie Combo			
ROAD CONSTRUC	CTION:			
Project No. 1	Road segment 1A-1B, 1C-1D, 1E-1F, 2A-2B, 2C-2D, & 2E-2F	<u>Length/Sta</u> 52.01	\$54,646	\$54,646
	TOTALS	52.01	0.99	φ04,040_
ROAD IMPROVEM	ENT:			
Project No. 2	Road segment 11-12, I3-14, I5-16, I7-18, I9-I10, & I11-I12	<u>Length/Sta</u> 312.10	<u>Cost</u> \$242,188	
	TOTALS			\$242,188
SPECIAL PROJEC		otion	<u>Cost</u>	
Project No. 3	Roadside Brushing and Spraying	ALCO II	\$ 52,713.09	
	Project Road Maintenance		\$6,228	
	TOTAL			\$58,941
MOVE IN:	Excavator (C330) Excavator (C315) Dozer (D8) Rubber Tired Skidder	<u>nent</u>	Cost \$1,406 \$805 \$1,406 \$717	
	Vibratory Roller 10-12 yd dump truck (X 4 @ \$163 each)	\$778 \$652	
	20 yd dump truck (X 4 @ \$191 each) 24 yd off highway dump Large Grader (14G) Water Truck (2,500 gal) Brusher Front end loader C966		\$764 \$774 \$778 \$190 \$805 \$778	
	TOTAL		MANAGE CONTRACTOR	\$9,853
GRAND TOTAL				\$365,628
Compiled By:	Kraig Kirkpatrick	FL	Date:	11/26/2013

SUMMARY OF CONSTRUCTION COSTS

			1C-1D 5+45	8+80	2C-2D 5+00	7+10	CULVERT MA Location 2E-2F	SUB TOTAL F	2E-2F	2C-2D	2A-2B	1E-1F	10-1D	EXCAVATION 1A-1B	SUB TOTAL F		SALE NAME: ROAD: POINTS:
Culvert stakes & markers:	Other/miscellaneous:		18"CPP	18"CPP	18"CPP	18"CPP	CULVERT MATERIALS AND INSTALLATION Location Diartype Lineal ft. 2E-2F	SUB TOTAL FOR EXCAVATION	Balanced Construction Field Design \$/sta Landing Construction Drift earth up to 200' Embankment Compaction Cut Slope Rounding (8+00 - 10+50)	Balanced Construction Field Design \$/sta. Landing Construction	Balanced Construction Field Design \$/sta Landing Construction Cut slope rounding (5+10 - 7+00) Common Drift < 50% slopes	Balanced Construction Field Design \$/sta. Landing Construction	Balanced Construction Field Design \$/sta Landing Construction	Material Balanced Construction Field Design \$/sta Landing Construction	SUB TOTAL FOR CLEARING & GRUBBING	Method Scatter Outside of R/W	Jarvie Combo 1A-1B (3+15), 1C-1D (10+25), 1E-1F (6+70), 2A-2B (7+46), 2C-2D (10+75), & 2E-2F (13+70)
& markers:	eous:		40	30	30	60	USTALLATION Lineal ft.	Z	ruction Field D uction 200' ompaction ding (8+00 - 10	ruction Field D	ruction Field Duction ction ing (5+10 - 7+ 50% slopes	ruction Field Du	ruction Field De	ruction Field De	GRUBBING	of R/W	C-1D (10+25), 1 & 2E-2F (13+7)
			\$19.53	\$19.53	\$19.53	\$19.53	Rate		esign \$/sta.)+50)	esign \$/sta.	esign \$/sta. 00)	esign \$/sta.	esign \$/sta.	esign \$/sta.			1E-1F (6+70), 0)
	Description		\$781.20	\$585.90	\$585.90	\$1,171.80	Cost		11.70 1.00 2.00 1,000 2.50	10.75 1.00	7.46 1.00 1.90 1,038	6.70 1.00	10.25 1.00	Cy/amount 3.15 1.00		Acres/amount 4	2A-2B (7+46),
							Location		× × × ×	××	××××	××	××	×××		×××	NEW CO
4	Quantity						Dia/type		\$122.00 \$389.00 \$190.00 \$0.70 \$43.00	\$122.00 \$389.00	\$122.00 \$389.00 \$43.00 \$1.80	\$122.00 \$389.00	\$122.00 \$389.00	Rate \$122.00 \$389.00		Rate \$1,337	IMPROVEMENT:
\$20.00	Rate						Lineal ft.		11 11 11 11 11	11 11	и и и и	11 11	11 11	11 11 11		11 11 11	52.0
\$80.00	Cost						Rate		\$1,427.40 \$389.00 \$380.00 \$700.00 \$107.50	\$1,311.50 \$389.00	\$910.12 \$389.00 \$81.70 \$1,868.40	\$817.40 \$389.00	\$1,250.50 \$389.00	Cost \$384.30 \$389.00		Cost \$5,348.00	STATIONS
							Cost	\$11,573							\$5,348		MILES
))))							Cost	\$11,573							\$5,348		

\$4,141			508					2A to 2B		Seament:	Total Rock for Road Segment:
	\$493	\$9.85	50		landings	50	landing	N/A	2B	6"-0" pit-run	Landings
	6 0 0	90.07	5 0	·	Stations	σ	station	_	2+00 tp /+00	1 1/2"-0" crushed	Traction Rock
	\$450	\$6.17	3)]	n -	turn around	11	turn around	. 00	7+10	4"-0" crushed	Turn Arounds
	\$180	\$8.17	22		junctions	22	junction	N/A	2A	4"-0" crushed	Base Rock
) 	 ;									Junction
	\$180	\$8.17	22	_	turnouts	22	turnout	8	4+20	4"-0" crushed	Turnouts
	\$3,047	\$8.17	373	7.46	stations	50	station	8	2A to 2B	4"-0" crushed	Base Rock
		amt.	(CY)	1	of		per	(inches)	Location	and Type	Application
		Sta./	VOLUME	iber	Number	(CX)	Volume (CY)	Rock		Rock Size	Application
	Cost	Rate/	TOTAL	57+46	0+00 to 7+46	<u>2</u> B	2A to 2B	Depth of			
			•	Sta.	Sta. to Sta.	POINT	POINT TO POINT			2A to 2B	ROAD SEGMENT
\$3,679			440					1E to1F		Segment:	Total Rock for Road Segment:
9	\$493	\$9.85	50	ے	landings	50	landing	N/A	Ŧ	6"-0" pit-run	Landings
	\$180	\$8.1/	22	_	turnouts	22	turnout	8	2+60	4"-0" crushed	Turnouts
	\$90	\$8.17	13	_	turn around		turn around	8	6+00	4"-0" crushed	Turn Arounds
	\$180	\$8.17	22		junctions		junction	N/A	Ħ	4"-0" crushed	Junction Base Rock
	\$2,737	\$8.77	335	6./0	stations	50	station	8	1E to 1F	4"-0" crushed	Base Rock
	707	amt.	(2)		0.1		per	(inches)	Location	and Type	i Portion
	COST	Sta/	VOLUME	ber	Number	(53)	Volume (CY)	Rock		Rock Size	Application
	2	Rate/	TOTAL) 6+70	0+00 to 6+70		1E to1F	Depth of		5	NOAD SEGMENT
				Sta.	Sta. to Sta.	TNIO	POINT TO POINT			1E +01E	OAD SEGMENT
\$5,309			640					1C to 1D		Seament:	Total Rock for Road Segment:
	\$493	\$9.85	50	_	landings	50	landing	N/A	10	6"-0" pit-run	andings
	\$359	\$8.17	44	2	turnouts	22	turnout		2+20, 7+25	4"-0" crushed	Turnouts
	\$90	\$8.17	1	_	turn around		turn around		9+10	4"-0" crushed	Turn Arounds
	\$180	\$8.17	22		junctions	22	junction	N/A	1 0	4"-0" crushed	Junction Base Rock
	Φ#, 107	\$0.17	010	10.25	stations	ö	station	α	1C to 1D	4"-0" crushed	Base Rock
	¢// 187	eo 47	(61)	200	0	<u>ו</u> כ	per	(inches)	Location	and Type	77
		Sta./	VOLUME	ber	Number	_ 당	Volume (CY)	Rock		Rock Size	Application
	Cost	Rate/	TOTAL	10+25	0+00 to 10+25	ס	1C to 1D	Depth of			
	11			Sta.	Sta. to Sta.	TNIO	POINT TO POINT			1C to 1D	ROAD SEGMENT
\$2,049			241				6	1A to 1B		Segment:	Total Book for Boad Segment:
	\$493	\$9.85	50	1	landings		landing		1B	6"_0" pit_run	andings
	\$90	\$8.17	11	1	urn around	1	turn around		2+50	4"-0" crushed	Turn Arounds
	\$180	\$8.17	22	_	junctions	22	junction	N/A	1A	4"-0" crushed	Junction Base Rock
	\$1,287	\$8.1/	158	3.15	stations	50	station	8	1A to 1B	4"-0" crushed	Base Rock
		amt.	(CY)	ber	Number	3	Volume (CY)	Rock (inches)	Location	Rock Size and Type	Application
	Cost	Rate/	TOTAL	3+15	0+00 to 3+15	В	1A to 1B	Depth of _			
			 - -	Sta.	Sta. to Sta.	TNIO	POINT TO POINT			1A to 1B	ROAD SEGMENT
	\ 	г				10,10		מו (וארוט, וג	ubgraue Compacin	ا ا	
\$1,050.08	\$20.19	×	52.01		2D. & 2E-2F)	1-2B 2C-2	10 1E-1F 24	on (14-18 16	Subgrade Compaction (1A-18 10-10, 10-12, 1E-1; 20-20, 2E-2F)	ი <u>ი</u>	
\$1,291.41	\dashv	4	52.01	الا	2C-2D. & 2E-2F	F 2A-2B	B 10-10 1E-1)itch 16' (1A-1	Grade Shane and Dirch 16' (1A-1B 1C-1D 1E-1F 2A-2B 2C-2D & 2E-2F)	oubgrade breb.	
Cost	sta/amt	×	amount					Description	7	Subgrade prep.	

\$34,5 \$20,1	Subtotal of Surfacing & Spec. Proj. Subtotal of Clearing, Exc.,Culv.	Subtotal of Subtota									
\$0								JECTS	SPECIAL PRO	SUB TOTAL FOR SPECIAL PROJECTS	
		Cost				Description	De		CTS	SPECIAL PROJECTS	
\$34,520		Total 3,427	1 1/2"-0" 30		2,997	6"-0"pr 300	24"-6"	G	ION SURFACIN	EW CONSTRUCT	SUB TOTAL FOR NEW CONSTRUCTION SURFACING
}						} {	, į				
\$2,937 \$282	\$56.48 \$56.48	52.00		Rock:	Water, Process & Compact Base Rock: Water, Process & Compact Surface/Traction Rock:	pact Bas pact Surf	Water, Process & Compact Base Rock: Water, Process & Compact Surface/Tra	Water, Prod Water, Prod	-		
Cost	П	+					Description		Processing:		
\$8,269			934					2E to 2F		Segment:	Total Rock for Road Segment
	\$493	\$9.85	50	_	landings	50	landing	N/A	2F	6"-0" pit-run	Landings
	\$539	\$8.17	66	ω -	turnouts	23	turnout	∞ α	2+00.5+90.11+50	4"-0" crushed	Turnouts
	\$1,3/1	\$8 17	100	1 N/A	Armor	1 N	Armor	o N/A	7+10	24"-6" rip rap	Armor
	2,01	27.									
	\$180	\$8.17	22	_	junctions	22	junction	N/A	2E	4"-0" crushed	Junction Base Rock
	\$5,596	\$8.17	685	13.70	stations	50	station	8	2E to 2F	4"-0" crushed	Base Rock
		amt.	(CY)	of			per per	(inches)	Location	and Type	Application
	Cost	Rate/	TOTAL	0+00 to 13+70	0+00 to	3 4	2E to 2F	Depth of))	
		l		Sta. to Sta.	Sta. t	POINT	POINT TO POINT			2E to 2F	ROAD SEGMENT
\$5,513			665					2C to 2D		Segment:	Total Rock for Road Segment:
	\$493	\$9.85	50	_	landings	50	landing	N/A	2D	6"-0" pit-run	Landings
	\$359	\$8.17	44	2	turnouts	22	turnout	8	3+30, 7+20	4"-0" crushed	Turnouts
	\$90	\$8.17	11		turn around	11	turn around		10+10	4"-0" crushed	Turn Arounds
	\$180	\$8.17	22	_	junctions	22	junction	N A	2C	4"-0" crushed	Junction Base Rock
	\$4,391	\$8.17	538	10.75	stations	50	station	8	2C to 2D	4"-0" crushed	Base Rock
		amt.	(CY)	7	0		per	(inches)	Location	and Type	Application
	Cost	Sta./	VOLUME	10+/5 1ber	Number	(5)	Volume (CY)	Depth of Rock		Rock Size	
) 	1	Sta.	Sta. to Sta.	POINT	POINT TO POINT			2C to 2D	ROAD SEGMENT

Date: 09/18/2013

\$54,646

SUMMARY OF CONSTRUCTION COSTS

\$63,900						NSTALLATION	MATERIALS & I	SUB TOTAL FOR CULVERT MATERIALS & INSTALLATION	SUB TOTAL
	\$820.00	\$20.00	41			Fiber glass markers	& markers:	Culvert stakes & markers:	
	Cost	Rate	Quantity		Description		neous:	Other/miscellaneous:	
					\$1,398.80	\$34.97	40	24" ACSP	173+15
					\$5,647.93	See Cost Sheet	50	24" ACSP	169+35
					\$1,204.03	See Cost Sheet	4 8	18" CPP	163+45
					\$585.90	\$19.53	30	18" CPP	161+65
					\$781.20	\$19.53	40	18" CPP	157+80
					\$1,369.22	See Cost Sheet	45	18" CPP	152+35
					\$585.90	\$19.53	30	18" CPP	148+25
					\$3,501.71	See Cost Sheet	45	24" ACSP	144+90
\$585.90	\$19.53	30	18" CPP	14+45	1	See Cost Sheet	-	decov "Vc	130+20
\$585.90	\$19.53	30	18" CPP	8+70		\$19.53		18" CPP	120+15
\$976.50	\$19.53	50	18 000	U+90		\$19.53		18" CPP	116+05
\$585 QO	610.53	3		19-170	1	\$19.53		18" CPP	113+00
\$1,398.80	\$34.9/		24" ACSP	46+80	1	See Cost Sheet		24" ACSP	106+60
\$585.90	\$19.53		18" CPP	43+40	1	\$19.53		18" CPP	102+65
	See Cost Sheet		108" ACSP	*37+05		\$19.53		18" CPP	97+80
\$585.90	\$19.53		18" CPP	32+65	- 1	\$19.53		18" CPP	00+00
\$1,748.50	\$34.97		24" ACSP	31+90		\$19.53		18" CPP	81+65
\$1,573.65	\$34.97		24" ACSP	28+70	1	\$19.53			79+40
\$585.90	\$19.53		18" 000	20+00		\$19.53		18" CPP	69+70
\$585 90	\$10.53		18" CBB	18+15	1	\$19.53		18" CPP	65+35
\$585.90	\$19.53	30	18" CPP	15+30		\$19.53		18" CPP	60+50
\$781.20	\$19.53		18" CPP	10+65	1	\$19.53		18" CPP	28+65
\$585.90	\$19.53		18" CPP	4+25	- [\$19.53		18" CPP	23+55
			3	17-18		\$19.53		18" CBB	16+95
\$585.90	\$19.53	30	18" 000	17+00	-	\$19.53		18" CPP	12+65
\$585.90	\$19.53	30	18" CPP	6+25	\$585.90	\$19.53		18" CPP	7+55
200	3			15-16					11-12
Cost	Rate	Lineal ft.	Dia/type	Location	Cost	Rate	INSTALLATION	CULVERT MATERIALS AND IN	CULVERT MA
									3
\$97,406							_	SUB TOTAL FOR EXCAVATION	SUB TOTAL F
				,					
		11 (1		××					
				: ×					
		-		×					
		11		×					
		11		×			Julia in Olo, with	Latabilati I dilidi	
	\$101	11	\$101.00	×	1.00	1	nind w/315 \$/h	Establish Turnar	19_140
	\$50,775	tt		×	(See Cost Sheets)			Station 37+05	
	\$25,836	11		« >	(See Cost Sheets)	detion	vert Reconstru	Fill/Type "F" Cu	
		"	0.00	< >	1.00		ound W/315, \$/ni	Establish lurnard	13-14
	\$101	"	\$101 00	< ×	(See Cost Sneets)		5	Station 169+35	
	\$2.797			: ×	(See Cost Sheets)			Station 166+40	
	\$432	II		×	(See Cost Sheets)			Station 152+35	
	\$3,792	11		×	(See Cost Sheets)			Station144+90	
	\$2,655	H		×	(See Cost Sheets)			Station 142+35	
	\$6,595	u		×	(See Cost Sheets)			Station 106+60	
	\$3,954	=		×	(See Cost Sheets)		Allon dedicts	Station 16+95	
		и		×	Official		netruction	Fill Culvert Door	
	Cost	II	Rate	× —	Cylamount	_		Motoric	EXCAVATION
							O COLUMN	SOB TOTAL TOX OFFERINGS & GIVERBUILD	300 10181
							GRIBBING	OB CI EARING &	SIB TOTAL EC
		ſ		×					
	Cost	ı	Rate	×	Acres/amount			Method	CENNING & C
								TO TO TO TO	POINTS:
						19-110 (30+65), 111-112 (5+75)	1-112 (5+75)	19-110 (30+65), 11:	
5.87 MIL	TATIONS	309.85 S	IMPROVEMENT:	IM	9	(24+00), 17-18 (63+5)	14 (9+70), 15-16	11-12 (176+25), 13-	ROAD:
MILES	STATIONS	S.	NSTRUCTION:	NEW CO				1 12 0	

SURFACING
Subgrade prep:

Grade, Shape and Ditch 16- All road improvement segments Subgrade Compaction-Pt. I1 to I2 only Stations/ amount 309.85 176.25 Rate/ sta/amt \$24.83 \$20.19

IIIA Stat IIIA Stat IIIA Stat IIIA Stat IIIA
Location Cinches Colume Cry
Clocation Clinches Der
0+00-176+25 N/A N/A N/A N/A N/A O+00-97+80 3 station 19 s s curve 11 station 19 s s curve 11 station 19 s s curve 11 station 19 s s s curve 11 station 19 s s s s curve 11 station 19 s s s curve 19 s s s s curve 19 s s s s curve 19 s s s curve 19 s curve 19 s s curve 19 s s curve 19
0+00-97+80 3 station 19 s 41+85 3 Curve 11 11 TC 1+35, 4+35, 11+40, 15+70, 22+75, 41+85, 49+80, 55+80, 61+80, 69+10, 72+45, 78+90, 82+80, 105+70, 111+75, 126+10, 154+90, 159+80, 169+10, 170+45 3 TO 154+90, 159+80, 169+10, 170+45 3 TO 154+90, 159+80, 169+10, 170+45 3 TO 169-50, 65+35, 69-70, 79+40, 81+85, 69-50, 65+35, 69-70, 79+40, 81+85, 150+80, 102+65, 102+65, 102+00, 142+35, 144+90, 152+35, 155+85, 157+80, 161+85, 169+35, 173+15 NI/A Cullvert NI/A 161+85, 106+60, 142+35, 144+90, 152+35, NI/A Cullvert NI/A 161+85, 106+60, 142+35, 144+90, 159+35 NI/A Cullvert NI/A 161+85, 106+60, 142+35, 144+90, 169+35 NI/A Cullvert NI/A 161+85, 166+40, 169+35 NI/A Cullvert NI/A 161+85, 166+40, 169+35 NI/A Cullvert NI/A Cullvert NI/A 161+85, 166+40, 169+35 NI/A Cullvert NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A
1+35, 4+35, 11440, 15+70, 22+75, 41+85, 49480, 55+50, 61+60, 69+10, 72+45, 49480, 55+50, 61+60, 69+10, 72+45, 78+90, 82+80, 105+70, 111+75, 126+10, 154+90, 159+80, 169+10, 170+45 N/IA Iunction 22 Iunction 22 Iunction 22 Iunction 22 Iunction 22 Iunction 22 Iunction 23 Iunction 24 Iunction 25 Iunction 25 Iunction 26 Iunction 26 Iunction 27 Iunction 27 Iunction 27 Iunction 28 Iunction 27 Iunction 28 Iunction 29 Iunction 29 Iunction 29 Iunction 29 Iunction 29 Iunction 20
41+85 8 TO 44 TO 1+35, 4+35, 11+40, 15+70, 22+75, 41+85, 49+80, 55+80, 65+80, 65+10, 172+45, 78+80, 25+80, 165+70, 111+75, 125+10, 154+80, 158+80, 168+10, 170+45 154+80, 158+80, 168+10, 170+45 3 TO 11 TC 154+80, 158+80, 168+10, 170+45 3 TO 11 TC 174-55, 12+65, 21+10, 23+55, 28+65, 60+50, 65+36, 69+70, 79+40, 81+85, 163+45, 163+45, 163+45, 163+45, 163+45, 163+45, 163+45, 163+45, 163+45, 163+45, 163+45, 163+45, 163+45, 163+45, 173+15 NI/A Cullvert NI/A N
1+35, 4+35, 11+40, 15+70, 22+75, 41+85, 49+80, 55+80, 61+80, 69+10, 72+45, 78+90, 23+80, 169+10, 176+25
0+00, 176+25 0+50, 176+25, 21+10, 23+55, 28+65, 60+50, 65+36, 62+10, 23+55, 28+65, 60+50, 65+36, 62+10, 79+40, 18+85, 60+50, 65+36, 62+10, 79+40, 18+85, 60+50, 161+65, 120+15, 130+20, 140+45, 152+45, 152+45, 161+65, 162+40, 162+45, 144+90, 152+35, N/A culvert N/A 106+60, 142+35, 144+90, 152+35, N/A culvert N/A 161+65, 163+45, 173+15 16+95, 106+60, 142+35, 144+90, 152+35, N/A dissipator N/A 152+35, 166+40, 169+35 N/A dissipator N/A dissipator N/A dissipator N/A 169+35 N/A
7+55, 12+65, 121+10, 22+65, 28+65, 60+50, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 66+36, 120+15, 130+20, 148+25, 1155+85, 157+80, 161+65, 163+45, N/A cul/vert N/A 106+60, 142+35, 144+90, 152+35, N/A cul/vert N/A cul/vert N/A cul/vert N/A dissipator N/A
173+15
16440, 169435
79-40, 81-85, 86-15, 92-90, 97-40, N/A dissipator 11 diss 161-85, 168-45, 173-15 N/A dissipator N/A dissipator 152-35, 166-40, 169-35 N/A
16+95, 106+60, 142+35, 144+90, 152+35, 166+40, 169+35
N/A
16+95, 106+60, 142+35, 144+90, 169+35
Depth of 13 to 14
Depth of 13 to 4
5+80 N/A TA 44 T
O-OO NIA impation OO impation

							SUB TOTAL FOR IMPROVEMENT SURFACING				Total Rock for Road Segment:	Turnaround	Junctions	Application:	Application	ROAD SEGMENT	Total Rock for Road Segment:	Culvert Bedding/Backfill @ Fills	Turnaround	Turnouts	Subgrade Leveling	Application		ROAD SEGMENT	Streambed Retention Material Total Rock for Road Segment:	Stream Bank Armor Rip Rap	Culvert Bedding/Backfill @ Fills Fill Armor	Base Rock @ Fills	Landing Rock	Junctions	Culvert Bedding/Backfill	Curve Widening	Turnouts Base Rock	Base Rock	O Priorection	Application	ROAD SEGMENT	Total Rock for Road Segment:	Landing Rock	Junctions	Turnouts	Subgrade Leveling	Application	ROAD SEGMENT
Compiled By:	GRAND TOTAL		SUB TOTAL FOR SPECIAL PROJECTS		0. 10001	SPECIAL PROJECTS	T SURFACING		Processing:		6"-0" pit-run	4"-0" crushed	11/2"-0" crushed	and Type	Rock Size	111 to 112	- 112 O CHAIREA	11/2"-0" crushed	4"-0" crushed	4"-0" crushed	4"-0" crushed	Rock Size and Type		19 to 110	36"-6"	24"-6" Rip-Rap	11/2"-0" crushed	4"-0" crushed	6"-0" pit-run	6"-4" Pit-Run	11/2"-0" crushed	4"-0" crushed	4"-0" crushed	4"-0" crushed	and Type	Rock Size	I7 to 18		6"-0" pit-run	11/2"-0" crushed	4"-0" crushed	and Type	Rock Size	I5 to I6
Kraig Kirkpatrick			AL PROJECTS					react, i locces a Collipact.	Nater Droppes & Compact		5+75	3+10	0.00	Location			0130, 3100, 61/0, 14145	0+00, 6+30	28+85	10+40 10+65	FOCKEOIL	Location			18+15, 37+05	18+15	18+15, 37+05	18+15, 37+05	63+50	18+15, 37+05	28+70, 31+90, 32+65, 43+40, 46+80	455 40165 45100 00100 00100	6+75, 10+65, 33+05, 40+50, 44+10	0.00	Location			11	6+25, 14+65, 17+00	0+00	7+00, 16+40	Location		
				1 1	ſ				Description	21.0	N/A A/N	N/A	N/A	(inches)	Depth of		19 to 110	N/A	N/A	4	N/A	Rock	Depth of	17 to 18	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4	4 4	N/A	(inches)	Depth of Rock		15 to 16	N/A	N/A	N/A	(inches)	Depth of Rock	
					Description		24"-6" 6"-0"pr 2.296 297					TA 44		per per	l11 to l12	POINT TO POINT	culvert N/A		TA 44		N/A	Volume (CY)	19 to 110	DOINT TO DOINT	cuivert N/A	culvert N/A	culvert N/A	station N/A			culvert N/A		Station 25		per (OI)	Volume (CY)			culvert N/A		TO 22	per	Volume (CY)	POINT TO POINT
							4"-0" 11/2"-0"				landings 1	junctions 1	N/A	Number	0+00 to 5+75	Sta. to Sta.			To's 3	stations 30.7	N/A	Number	0+00 to 30+65		culverts 2	culverts 2	culverts 2	l		dam N/A		curves 6	stations 47.8		of	0+00 to 63+50	Sta. to Sta.	landings 1	culverts 3		N/A	of	0+00 to 24+00 Number	Sta. to Sta.
										198	55	22	77	VOLUME	TOTAL	BC7'1	165	88	66	766	110 (CY)	VOLUME	TOTAL	3,269	66	665	451	55	44	66	728	66	1,195	110	VOLUME	TOTAL	528	55	99	22	308	(CY)	TOTAL	
Date:		Subto Sı			Cost	11,165	Total	312.10	No.sta		\$9.85	\$5.07	\$8.17	Sta./	Rate/		\$5.07	\$5.07	\$8.17	\$8.17	amt.	Sta./	Rate/					\$9.85	\$5.07	\$9.85	es 07	\$8.17	\$5.07	\$8.17	Sta./	Rate/		\$9.85	\$5.07	\$5.07	\$8.17	amt.	Rate/	
10/24/2013		Subtotal of Surfacing & Spec. Proj. Subtotal of Clearing, Exc., Culv.						\$56.48			\$542	\$112	\$629	Just	Cost		\$837	\$446	\$539	\$6,260	800	Cost		9	* 00 1	* On F	* On T	\$542	\$223	\$650	9	\$449 \$539	\$6,059	\$899		Cost		\$542	\$502	\$359	\$2,516		Cost	
	\$242,188	ec. Proj. \$80,882 xc.,Culv. \$161,306	2			\$80,882		\$17,627	Cost	\$1,642					,	\$9,340								\$11,257	*On Fill Sheet	* On Fill Sheet	ill Sheet										\$4,031							_

Kraig Kirkpatrick 10/18/2013

Segment: I1 to I2 Fill: 1

 Station:
 16+95

 Height:
 15

Materials	Quantity		\$	Total
24"x65', 14ga, CMP	65		\$26.17	\$1,701.05
24"-6" Riprap Dissipator	99	су	\$13.71	\$1,357.29
24"-6" Riprap Fill Armor	240	су	\$13.71	\$3,290.40
1 1/2"-0" Crushed Rock for	88	су	\$5.07	\$446.16
Bedding/Backfill				
4"-0" Crushed Rock for Road	33	су	\$8.17	\$269.61
Erosion Control	0.01	ac	\$1,979.00	\$19.79
Mulch and seed				

\$7,084.30

Excavation	Rate	CY/amount	Total
End-Haul excavation \$/cy			
Excavate Fill	\$4.00	185	\$740.00
Backfill from barrow site	\$4.00	253	\$1,012.00
Compaction			
Backfill (barrow & crushed rock)	\$0.70	253	\$177.10
Waste material compaction	\$0.40	185	\$74.00
Fill armor placement w/330, \$/hr	\$155.00	10	\$1,550.00
Laborer \$/hr	\$40.00	10	\$400.00

\$3,953.10

Project Total

\$11,037

Kraig Kirkpatrick 10/18/2013

Segment: 11 to I2 Fill: 2

 Station:
 106+60

 Height:
 18

Materials	Quantity	/	\$	Total
24"x85', 14ga, CMP	85		\$26.17	\$2,224.45
24"-6" Riprap Dissipator	22	су	\$13.71	\$301.62
24"-6" Riprap Fill Armor	450	су	\$13.71	\$6,169.50
1 1/2"-0" Crushed Rock for	121	су	\$5.07	\$613.47
Bedding/Backfill				
4"-0" Crushed Rock for Road	33	су	\$8.17	\$269.61
Erosion Control	0.01	ac	\$1,979.00	\$19.79
Mulch and seed				

\$9,598.44

Excavation	Rate		CY/amount	Total
End-Haul excavation \$/cy				
Excavate Fill	\$4.00		370	\$1,480.00
Backfill from barrow site	\$4.00		444	\$1,776.00
Compaction		•		
Backfill (barrow & crushed rock)	\$0.70		444	\$310.80
Waste material compaction	\$0.40		370	\$148.00
Fill armor placement w/330, \$/hr	\$155.00		16	\$2,480.00
Laborer \$/hr	\$40.00		10	\$400.00

\$6,594.80

Project Total

\$16,193

Kraig Kirkpatrick 10/18/2013

Segment: 11 to I2 Fill: 3

 Station:
 142+35

 Height:
 11

Materials	Quantity		\$	Total
24"x55', 14ga, CMP	55		\$26.17	\$1,439.35
24"-6" Riprap Dissipator	22	су	\$13.71	\$301.62
24"-6" Riprap Fill Armor	150	су	\$13.71	\$2,056.50
1 1/2"-0" Crushed Rock for	88	су	\$5.07	\$446.16
Bedding/Backfill				
4"-0" Crushed Rock for Road	33	су	\$8.17	\$269.61
Erosion Control	0.01	ac	\$1,979.00	\$19.79
Mulch and seed				

\$4,533.03

Excavation	Rate	CY/amount	Total
End-Haul excavation \$/cy			
Excavate Fill	\$4.00	125	\$500.00
Backfill from barrow site	\$4.00	150	\$600.00
Compaction			
Backfill (barrow & crushed rock)	\$0.70	150	\$105.00
Waste material compaction	\$0.40	. 125	\$50.00
Fill armor placement w/330, \$/hr	\$155.00	8	\$1,240.00
Laborer \$/hr	\$40.00	4	\$160.00

\$2,655.00

Project Total

\$7,188

Kraig Kirkpatrick 10/18/2013

 Segment:
 I1 to I2
 Station:
 144+90

 Fill:
 4
 Height:
 8

Materials	Quantity	/	\$	Total
24"x45', 14ga, CMP	45		\$26.17	\$1,177.65
24"-6" Riprap Dissipator	44	cy	\$13.71	\$603.24
24"-6" Riprap Fill Armor	80	cy	\$13.71	\$1,096.80
1 1/2"-0" Crushed Rock for	66	су	\$5.07	\$334.62
Bedding/Backfill				
4"-0" Crushed Rock for Road	33	су	\$8.17	\$269.61
Erosion Control	0.01	ac	\$1,979.00	\$19.79
Mulch and seed				

\$3,501.71

Excavation	Rate	CY/amount	Total
End-Haul excavation \$/cy			
Excavate Fill	\$4.00	300	\$1,200.00
Backfill from barrow site	\$4.00	360	\$1,440.00
Compaction			
Backfill (barrow & crushed rock)	\$0.70	360	\$252.00
Waste material compaction	\$0.40	300	\$120.00
Fill armor placement w/330, \$/hr	\$155.00	4	\$620.00
The arrier placement wices, with	Ψ100.00	4	Ψ020.00
Laborer \$/hr	\$40.00	4	\$160.00

\$3,792.00

Project Total \$7,294

Kraig Kirkpatrick 10/18/2013

Segment: 11 to I2 Fill: 5

Station: 152+35 Height: 8

Materials	Quantity	,	\$	Total
18"x45', CPP	45		\$10.73	\$482.85
24"-6" Riprap Dissipator	11	су	\$13.71	\$150.81
	ľ	су		\$0.00
1 1/2"-0" Crushed Rock for	88	су	\$5.07	\$446.16
Bedding/Backfill				
4"-0" Crushed Rock for Road	33	су	\$8.17	\$269.61
Erosion Control	0.01	ac	\$1,979.00	\$19.79
Mulch and seed				

\$1,369.22

Excavation	Rate	CY/amount	Total
End-Haul excavation \$/cy			
Excavate Fill	\$4.00	66	\$264.00
Compaction			
Backfill (barrow & crushed rock)	\$0.70	88	\$61.60
Waste material compaction	\$0.40	66	\$26.40
			\$0.00
Laborer \$/hr	\$40.00	2	\$80.00

\$432.00

Project Total

\$1,801

Kraig Kirkpatrick 10/18/2013

Segment: I1 to I2 Fill: 6

 Station:
 166+40

 Height:
 7

Materials	Quantity		\$	Total
18"x40', CPP	40		\$10.73	\$429.20
24"-6" Riprap Dissipator	11	су	\$13.71	\$150.81
1 1/2"-0" Crushed Rock for Bedding/Backfill	66	су	\$5.07	\$334.62
4"-0" Crushed Rock for Road	33	су	\$8.17	\$269.61
Erosion Control Mulch and seed	0.01	ac	\$1,979	\$19.79

\$1,204.03

Excavation	Rate	CY/amount	Total
End-Haul excavation \$/cy			***
Excavate Fill	\$4.00	55	\$220.00
Compaction			
Backfill (barrow & crushed rock)	\$0.70	66	\$46.20
Waste material compaction	\$0.40	55	\$22.00
Laborer \$/hr	\$40.00	2	\$80.00

\$368.20

Project Total

\$1,572

Kraig Kirkpatrick 10/18/2013

 Segment:
 I1 to I2
 Station:
 169+35

 Fill:
 7
 Height:
 10

Materials	Quantity		\$	Total
24"x50', 14ga, CMP	50		\$26.17	\$1,308.50
24"-6" Riprap Dissipator	11	су	\$13.71	\$150.81
24"-6" Riprap Fill Armor	260	су	\$13.71	\$3,564.60
1 1/2"-0" Crushed Rock for	66	су	\$5.07	\$334.62
Bedding/Backfill				
4"-0" Crushed Rock for Road	33	су	\$8.17	\$269.61
Erosion Control	0.01	ac	\$1,979	\$19.79
Mulch and seed				

\$5,647.93

Excavation	Rate	CY/a	mount	Total
End-Haul excavation \$/cy				
Excavate Fill	\$4.00	1	18	\$472.00
Backfill from barrow site	\$4.00	7	'7	\$308.00
Compaction				
Backfill (barrow & crushed rock)	\$0.70	14	43	\$100.10
Waste material compaction	\$0.40	1	18	\$47.20
Fill armor placement w/330, \$/hr	\$155.00	1	0	\$1,550.00
Laborer \$/hr	\$40.00		8	\$320.00

\$2,797.30

Project Total

\$8,445

Sale Name:

Jarvie Combo. Pt 17-18 Sta. 18+15

Date:

11/15/13

Compiled By: Kraig Kirkpatrick

\$6,756																Sub total Culvert Material Cost:
\$700			\$500	_												Freight to Astoria Area
\$202			\$101	2												Step Beveling (both ends)
\$274			\$137	2												Bands '
\$5,580			\$93	60												72" Aluminized Steel Culvert (12 ga)
\$18,901				Ť	\$1,140	\$60	\$240	\$616	\$4,064	\$1,313	\$7,905	\$ 3,563				Sub total :
					\$38	\$10	\$10	\$77	\$127	\$101	\$155					Equipment Rates:
					30	6	24	8	32	13	51					Total Hours
\$179	\$1,794	0.100														Seeding and Mulching:
												\$ 409	8.17	\$	50	Road Surfacing Base Rock
											8	\$ 1,659	13.71	\$ 1	121	Develop and Place Riprap/Fill Armor
											1	\$ 302	13.71	\$ 1	22	Stream Bank Armor Rip Rap
												\$ 302	13.71	\$	22	Streambed Retention Rip Rap
										_						Compact/Shape Waste Area
											2					Develop Waste Area
																Seed culvert w\onsite cobble
								8								Fill Compaction
								-	12	12	12				255	barrow site
				+										1		Domaining Backfill Dlacoment from
				\dagger	1	1					^	\$ /23	0.07	6	143	Wich as led lock
											ა				7	Place culvert \compact flanks
					2	2						\$ 167	5.07	\$	33	rock
					24		24									De-watering (w/pump) (24hrs/day) Build culvert bed compact w/crushed
									20		20				350	Fill and Culvert removal\disposal
											4					Unload and move cmp to site
v	\$/Acre	Acres	\$/ft.	표		Tamper	Pump	Roller	Highway Dump	C315	C330	Cost			CY	Construction Phase
Total	Erosion Control	Erosion	Culvert	ြဂ	Labor			t Hours	Equipment Hours			Haul	ost/CY	Cost/CY	QTY	

Sale Name:

Jarvie Combo Pt I7-18 Sta. 37+05

Date:

11/15/13

Compiled By:

Kraig Kirkpatrick

	_											Sub total Cultort Material Cost.
\$500	1 \$5	-										Freight to Astoria Area
\$151	2 \$1											Step Beveling (both ends)
\$202	4 \$2											Bands
\$140	90 \$1	3										108" Aluminized Steel Culvert (12 ga)
		\$1,520	\$130 \$	\$240	\$1,232	\$6,350	\$5,353	\$11,470	\$ 9,864			Sub total :
		\$38	_	\$10	\$77	\$127	\$101	\$155				Equipment Rates:
		40	13	24	16	50	53	74				Total Hours
0.100												Seeding and Mulching:
									\$ 409	\$ 8.17	50	Road Surfacing Base Rock
								12	\$ 7,458	\$ 13.71	544	Develop and Place Riprap/Fill Armor
		-						2	\$ 603	\$ 13.71	44	Streambed Retention Rip Rap
							ω					Compact/Shape Waste Area
								2				Develop Waste Area
												Seed culvert w\onsite cobble
	-				16							Fill Compaction
		8	51			20	20	20			2,195	barrow site
								ı	.,00.	9.0	+	Wichasiled lock
		Οī	රා -					N	\$ 1.004	5 07	198	Place culvert \compact flanks
		ω	З					2	\$ 390	\$ 5.07	77 \$	rock
												Build culvert bed compact w/crushed
		24		24								De-watering (w/pump) (24hrs/day)
						30	30	30			2,470	Fill and Culvert removal\disposal
								4				Unload and move cmp to site
\$/ft. Acres		Ţ	Tamper	Pump	Roller	Dump	C315	C330	Cost		СҮ	Construction Phase
						24CY off						
rt Erosion Control	Culvert	Labor	<u></u>		Hours	Equipment Hours			Haul	Haul Cost/CY	QTY C	

CRUSHED ROCK COST

DATE: 11/20/2013
BY: Kraig Kirkpatrick Jarvie Combo SALE NAME: _ MATERIAL: 1 1/2"-0" & 4"-0" PROJECT: Nos. 1 and 2

Tidewater 1 1/2"-0" & 4"-0" QUARRY:

QUARTE.	Tidewa	ici i iiz c									
		0.11				ONE W	AY HAUL IN	MILES			Total
Road	Stations	Cubic	50 MPH	20	монІ	25 MDH	ATRAULIN 20 MPH	15 MPH	10 MPH	5 MPH	Haul
Segment	7.40	Yards	50 MPH	30	IVIFI	1.00	1.00	1.00	0.60	0.15	3.75
2A-2B	7.46	30				1.00	1.00	0.50	0.50	0.15	3.15
I1-I2	97.80	3,904				1.00	1.50	1.00	0.40	0.10	4.00
13-14	9.70	22				1.00	1.50	1.00	0.25	0.10	3.85
15-16	24.00	121				1.00	1.50	1.00	0.50	0.10	4.10
17-18	63.50	1,869				1.00	1.50	1.00	0.60	0.15	4.25
19-110	30.65	253				1.00	1.50	1.50	0.50	0.15	4.65
l11-l12	5.75	22				1.00	1.00	1.00	- 0.00	00	
											i
											
											ł
					1						
]
	-										
											1
				<u> </u>							
											1
											1
											1
			ļ								1
			<u> </u>	 							1
											1
								-			1
											AVERAGE
TOTAL	238.86	6,221	4								HAUL
	STA./NO.	CU. YD.	1			1			ا محما	0.42	3.50
CUBIC YAR	D WEIGHTEI	O HAUL		<u> </u>		1.00	1.18	0.69	0.50	0.13	3.50
						<i>F</i>	Average Rou	ind Trip Dista	ance (miles)	7.01	

ROCK HAUL:

Truck type:	D20	No. trucks:	2		
Delay min.:	8	Efficiency:	85%	Ave haul: \$3.81	/cy
				Load: \$0.48	/cy
Truck type:	D12	No. trucks:	6	Spread: \$0.78	/cy
Delay min.:	6	Efficiency:	85%		
Truck type:_ Delay min.:	D10 5	_ No. trucks: _ Efficiency:	85%	Production: cy/day =	1,414

CRUSHED ROCK HAUL COSTS 6,221 cy @ \$5.07 /cy

CRUSHED ROCK COST

 SALE NAME:
 Jarvie Combo
 DATE:
 09/19/2013

 PROJECT:
 Nos. 1 and 2
 MATERIAL:
 4"-0" Crushed
 BY:
 Johnson

QUARRY: Hamilton Creek Road Stockpile 4"-(

										•
Road	Otation:	Cubic				AY HAUL IN				Total
Segment	Stations	Yards	50 MPH	30 MPH	25 MPH		15 MPH		5 MPH	Haul
1A-1B	3.15	191	2	1	2.50	2.00	1.50	0.75	0.10	9.85
1C-1D	10.25	590	2	1	2.50	1.50	1.50	1.05	0.10	9.65
1E-1F	6.70	390	2	1	2.50	1.50	1.50	1.00	0.10	9.60
2A-2B	7.46	428	2	11	2.50	1.50	1.00	0.75	0.10	8.85
2C-2D	10.75	615	2	1	2.50	1.50	1.00	0.90	0.10	9.00
2E-2F	13.70	784	2	1	2.50	1.50	1.00	0.90	0.10	9.00
11-12	176.25	275	2	1	2.00	1.00	2.00	1.15	0.10	9.25
13-14	9.70	121	2 .	1	2.00	1.00	1.40	1.00	0.10	8.50
15-16	24.00	352	2	1	2.00	1.00	1.35	1.45	0.10	8.90
17-18	63.50	526	2	1	2.00	1.00	2.00	1.35	0.10	9.45
19-110	30.65	986	2	1	2.00	1.00	2.00	1.45	0.10	9.55
l11-l12	5.75	121	2	1	2.00	1.50	2.00	1.35	0.10	9.95
										· ·
										ļ
-										
										1
										l
		ì								
TOTAL	361.86	5,379								AVERAGE
		CU. YD.								HAUL
CUBIC YARD	WEIGHTED	HAUL	2.00	1.00	2.28	1.31	1.50	1.11	0.10	9.29
					Α	verage Rou	nd Trip Dista	ance (miles)	18.59	

ROCK HAUL:

Delay min.:

5

Truck type:	D20	No. trucks:	4				
Delay min.:	8	Efficiency:	85%		Ave haul:	\$6.91	/cy
					Load:	\$0.48	/cy
Truck type:	D12	No. trucks:	6		Spread:	\$0.78	/cy
Delay min.:	6	Efficiency:	85%	•			
Truck type:	D10	_ No. trucks: _			Production: cy/da	ay =	1,012

Efficiency: 85%

CRUSHED ROCK HAUL COSTS 5,379 cy @ \$8.17 /cy

PIT RUN ROCK COST

SALE NAME: __ DATE: 09/19/2013 Jarvie Combo PROJECT: Nos. 1 and 2 MATERIAL: Pit Run 6"-0" BY: Johnson QUARRY: Hamilton Creek Quarry

		KOII OIOOIL								
Road	T	Cubic			ONE W	AY HAUL IN	MILES			Total
Segment	Stations	Yards	50 MPH	30 MPH				10 MPH	5 MPH	Haul
1A-1B	3.15	50	2	1	2.50	2.00	1.50	0.75	0.10	9.85
1C-1D	10.25	50	2	1	2.50	1.50	1.50	1.05	0.10	9.65
1E-1F	6.70	50	2	1	2.50	1.50	1.50	.1.00	0.10	9.60
2A-2B	7.46	50	2	1	2.50	1.50	1.00	0.75	0.10	8.85
2C-2D	10.75	50	2	1	2.50	1.50	1.00	0.90	0.10	9.00
2E-2F	13.70	50	2	1	2.50	1.50	1.00	0.90	0.10	9.00
l1-l2	176.25	66	2	1	2.00	1.00	2.00	1.15	0.10	9.25
15-16	24.00	55	2	1	2.00	1.00	1.35	1.45	0.10	8.90
17-18	63.50	121	2	1	2.00	1.00	2.00	1.35	0.10	9.45
l11-l12	5.75	55	2	1	2.00	1.50	2.00	1.35	0.10	9.95
						,				
										1
										1
	 									1
										1
										1
										1
										1
										1
										1
										1
	ļ									1
	.									
										-
										1
										1
										1
										AVEDACE
TOTAL	321.51	597								AVERAGE
		CU. YD.						,,,	0.40	HAUL
CUBIC YARD	WEIGHTED	HAUL	2.00	1.00	2.25	1.34	1.56	1.11	0.10	9.36
					F	Average Rou	na Trip Dista	ance (miles)	18.72	

ROCK HAUL:

Truck type:	D20	No. trucks:			
Delay min.:	8	Efficiency:	85%	Ave haul: \$7.86	/cy
•				Load: \$0.72	/cy
Truck type:	D12	No. trucks:	8	Spread: \$1.26	/cy
Delay min.:	6	Efficiency:	85%		
Truck type:	D10	No. trucks:		Production: cy/day =	642
Delay min.:	5	Efficiency:	85%		

PIT RUN ROCK HAUL COSTS 597 cy @ \$9.85 /cy

RIP RAP ROCK COST

SALE NAME:	Jarvie Combo		DATE:	09/19/2013
PROJECT:	Nos. 1 and 2	MATERIAL: Rip Rap 24"-6"	BY:	Johnson
QUARRY:	Hamilton Creek Quarry			

Road	01 11	Cubic			ONE W	AY HAUL IN	MILES			Total
Segment	Stations	Yards	50 MPH	30 MPH	25 MPH	20 MPH	15 MPH	10 MPH	5 MPH	Haul
2E-2F	13.70	100	- 2	1	2.50	1.50	1.00	0.90	0.10	9.00
I1-I2	176.25	1,543	2	1	2.00	1.00	2.00	1.15	0.10	9.25
17-18	63.50	753	2	1	2.00	1.00	2.00	1.35	0.10	9.45
				7						
	<u> </u>									
	l									
										1
										ļ
										1
TOTAL	253.45	2,396	1							AVERAGE
	STA./NO.	CU. YD.	1							HAUL
CUBIC YARD	WEIGHTEI	HAUL	2.00	1.00	2.02	1.02	1.96	1.20	0.10	9.30
			1	•	,	Average Rou	ind Trip Dista	ance (miles)	18.60	

ROCK HAUL:

Truck type:	D12	No. trucks:	6			
Delay min.:	6	Efficiency:	85%	Ave haul:	\$8.03	/cy
		•		Load:	\$1.38	/cy
Truck type:	D10	No. trucks:		Develop:	\$4.30	/cy
Delay min	5	- Efficiency:	85%			

Production: cy/day = 472

RIP RAP ROCK HAUL COSTS

2,396 cy @ \$13.71 /cy

Jarvie Combo Timber Sale No. 341-14-38

Mechanical Brushing Costs

Date: 11/22/13

Road	Road Name	Length (Feet)	Miles	Brush Density	Cost / Mile	Segment
Segment/		,				Cost
Point						
					*	#0.505
B1.	Beneke Rd	12,406	2.35	Medium	\$1,100.00	\$2,585
B2	Trailover Rd	14,852	2.81	Medium	\$1,100.00	\$3,094
B3	Music Rd	19,917	3.77	Heavy	\$1,550.00	\$5,847
	Wild Goose Tie-Thru				04 550 00	#0.000
B4	Rd.	9,635	1.82	Heavy	\$1,550.00	\$2,828
B5	Wild Goose Rd.	11,960	2.27	Medium	\$1,100.00	\$2,492
B6	Trailover Ridge Rd	7,985	1.51	Medium	\$1,100.00	\$1,664
B7		1,715	0.32	Medium	\$1,100.00	\$357
B8		450	0.09	Medium	\$1,100.00	\$94
B9		1,195	0.23	Medium	\$1,100.00	\$249
B10 ·		1,480	0.28	Medium	\$1,100.00	\$308
B11		4,810	0.91	Medium	\$1,100.00	\$1,002
B12		195	0.04	Medium	\$1,100.00	\$41
B13		540	0.10	Heavy	\$1,550.00	\$159
B14		3,650	0.69	Heavy	\$1,550.00	\$1,071
B15		1,410	0.27	Medium	\$1,100.00	\$294
B16		345	0.07	Medium	\$1,100.00	\$72
B17		145	0.03	Heavy	\$1,550.00	\$43
B18		95	0.02	Heavy	\$1,550.00	\$28
B19		260	0.05	Heavy	\$1,550.00	\$76
B20		150	0.03	Medium	\$1,100.00	\$31
B21		150	0.03	Heavy	\$1,550.00	\$44
B22		150	0.03	Heavy	\$1,550.00	\$44
B23		345	0.07	Heavy	\$1,550.00	\$101
B24		1,570	0.30	Medium	\$1,100.00	\$327
B25		285	0.05	Medium	\$1,100.00	\$59
B26		140	0.03	Heavy	\$1,550.00	\$41
B27		625	0.12	Heavy	\$1,550.00	\$183
B28		200	0.04	Heavy	\$1,550.00	\$59
B29		320	0.06	Medium	\$1,100.00	\$67
B30		890	0.17	Medium	\$1,100.00	\$185
B31		5,090	0.96	Medium	\$1,100.00	\$1,060
B32		115	0.02	Medium	\$1,100.00	\$24
B33		475	0.09	Medium	\$1,100.00	\$99
B34		905	0.17	Medium	\$1,100.00	\$189
B35		155	0.03	Medium	\$1,100.00	\$32
B36	Kalina Tie Thru	12,340	2.34	Heavy	\$1,550.00	\$3,623
B37		330	0.06	Medium	\$1,100.00	\$69
B38		2,080	0.39	Medium	\$1,100.00	\$433
B39		240	0.05	Medium	\$1,100.00	\$50
B40		5,035	0.95	Heavy	\$1,550.00	\$1,478
B41		100	0.02	Heavy	\$1,550.00	\$29

B42		135	0.03	Heavy	\$1,550.00	\$40
B43		170	0.03	Heavy	\$1,550.00	\$50
B44		330	0.06	Heavy	\$1,550.00	\$97
B45		325	0.06	Heavy	\$1,550.00	\$95
B46		2,640	0.50	Medium	\$1,100.00	\$550
B47		630	0.12	Medium	\$1,100.00	\$131
B48		240	0.05	Medium	\$1,100.00	\$50
B49		985	0.19	Medium	\$1,100.00	\$205
B50		295	0.06	Medium	\$1,100.00	\$61
B51		305	0.06	Medium	\$1,100.00	\$64
B52		3,665	0.69	Medium	\$1,100.00	\$764
B53		85	0.02	Medium	\$1,100.00	\$18
B54		260	0.05	Medium	\$1,100.00	\$54
B55		280	0.05	Heavy	\$1,550.00	\$82
B56		340	0.06	Medium	\$1,100.00	\$71
B57		7,760	1.47	Heavy	\$1,550.00	\$2,278
B58		185	0.04	Heavy	\$1,550.00	\$54
B59		535	0.10	Heavy	\$1,550.00	\$157
B60		3,920	0.74	Heavy	\$1,550.00	\$1,151
B61		260	0.05	Heavy	\$1,550.00	\$76
B62		465	0.09	Heavy	\$1,550.00	\$137
B63		160	0.03	Heavy	\$1,550.00	\$47
B64		90	0.02	Heavy	\$1,550.00	\$26
B65		175	0.03	Heavy	\$1,550.00	\$51
B66		215	0.04	Heavy	\$1,550.00	\$63
B67		495	0.09	Heavy	\$1,550.00	\$145
B68		190	0.04	Heavy	\$1,550.00	\$56
B69		135	0.03	Heavy	\$1,550.00	\$40
B70		125	0.02	Heavy	\$1,550.00	\$37
B71		1,575	0.30	Heavy	\$1,550.00	\$462
B72		220	0.04	Heavy	\$1,550.00	\$65
B73		95	0.02	Heavy	\$1,550.00	\$28
B74		145	0.03	Heavy	\$1,550.00	\$43
B75		405	0.08	Heavy	\$1,550.00	\$119
B76		350	0.07	Heavy	\$1,550.00	\$103
B77		150	0.03	Heavy	\$1,550.00	\$44
B78		85	0.02	Heavy	\$1,550.00	\$25
B79		9,055	1.71	Heavy	\$1,550.00	\$2,658
B80		275	0.05	Heavy	\$1,550.00	\$81
B81		315	0.06	Heavy	\$1,550.00	\$92
B82	ı	825	0.16	Heavy	\$1,550.00	\$242
B83		95	0.02	Heavy	\$1,550.00	\$28
B84		810	0.15	Heavy	\$1,550.00	\$238
B85		780	0.15	Heavy	\$1,550.00	\$229
B86		545	0.10	Heavy	\$1,550.00	\$160
B87		2,985	0.57	Heavy	\$1,550.00	\$876
B88		155	0.03	Medium	\$1,100.00	\$32
B89		7,900	1.50	Medium	\$1,100.00	\$1,646
B90		3,550	0.67	Medium	\$1,100.00	\$740
391		1,670	0.32	Medium	\$1,100.00	\$348
392		380	0.07	Medium	\$1,100.00	\$79
393		280	0.05	Medium	\$1,100.00	\$58

Totals	187180.00	35.45			\$46,495
	·				\$0
B99	1,535	0.29	Medium	\$1,100.00	\$320
B98	340	0.06	Medium	\$1,100.00	\$71
B97	555	0.11	Medium	\$1,100.00	\$116
B96	495	0.09	Medium	\$1,100.00	\$103
B95	650	0.12	Medium	\$1,100.00	\$135
B94	830	0.16	Medium	\$1,100.00	\$173

Road Maintenance Cost Summary

Sale: Date: By:

Jarvie Combo 06-Dec-13 J. Johnson

9,863 MBF: \$\$/MBF:

Type	Equipment/Rationale	Move-in	Times	Hours	Rate	Cost		Product	Production Rates	
		Rate								
Interim Road	Grader 14G	\$675		20	\$93	\$2,535	Production Rates	Miles/day	Distance(miles)	Days
Maintenance #1	Dump Truck 12CY	\$141	_	16	\$73	\$1,309	Grader	3.0	4.5	1.5
	FE Loader C966	\$675	_	_∞	\$77	\$1,291				
									-	
Interim Road	Grader 14G	\$675	_	20	\$93	\$2,535				
Maintenance #2	Dump Truck 12CY	\$141	_	16	\$73	\$1,309	Production Rates	Miles/day	Distance(miles)	Days
	FE Loader C966	\$675	τ-	∞	\$77	\$1,291	Grader	1.5	4.5	3.0
							Vibratory Roller*	1.5	4.5	3.0
Final Road	Grader 14G	\$675	-	30	\$93	\$3,465				
Maintenance	Dump Truck 12CY x 2	\$141	7	16	\$73	\$2,477				
	FE Loader C966	\$675	_	16	\$77	\$1,907				
	Excavator C315	669\$	_	16	\$94	\$2,203				
	Vibratory Roller	\$675	-	20	\$72	\$2,115				
	Water Truck 2,500 gallon	\$165	Ψ-	10	\$83	\$66\$				
Total							\$24,040			

*Final Road Maintenance Only

Projects Road Maintenance Cost Summary

Sale: Jarvie Combo

Date: 22-Nov-13

Exraig Kirkpatri

Cost	\$2,000	\$290	\$830	\$1,540	\$1,068		
Rate	\$100	\$79	\$83	\$77	\$89		
Hours	20	10	10	20	12		
Equipment/Rationale	Grader 14G	Dump Truck 12CY	FE Loader C966	Vibratory Roller	Water Truck 2,500 gallon		
Type		Final Haul		ά	Haul Route		Total

Production Rates	Miles/day	Distance(miles)	Days
Grader	1.5	3.6	2.4
Vibratory Roller	1.5	3.6	2.4
Hamilton Creek Road to Hwy 202, Tide Water Loop Quarry to Pt. 12	Nater Loop Qual	ry to Pt. 12	

\$6,228

Jarvie Combo Timber Sale No. 341-14-38

Roadside Spraying

Date: 11/22/13

Segments	Feet	Miles	Cost per Mile	Segment Cost	
Total from brushing	186910.00	35.40	\$170.00	\$	6,017.94
S1	3205	0.61	\$170.00	\$	103.19
S2	390	0.07	\$170.00	\$	12.56
S3	2240	0.42	\$170.00	\$	72.12
S4	150	0.03	\$170.00	\$	4.83
S5	240	0.05	\$170.00	\$	7.73
Total	193135.00	36.58		\$	6,218.36

Jarvie Combo TIMBER CRUISE REPORT FY 2014

Sale Area Location: Areas 1 and 2 are located in Section 23, 24, and 26, T6N, R7W, W.M., Clatsop County, Oregon.

2. Fund Distribution:

BOF 100%

Tax Code

8-01 (100%)

3. Sale Acreage by Area:

Area	Treatment	Gross Acres	GTRA	Existing R/W	New R/W	Stream Buffer	Net Acres	Survey Method
1	Modified Clearcut	135	1	2	1	36	95	GIS
2	Partial Cut	198	0	2	2	27	167	GIS
3	Right-of-Way	3	0	0	0	0	3	GIS
TOTALS		336	1	4	3	63	265	

- **4.** Cruisers and Cruise Dates: Areas 1 and 2 were cruised by Jenny Johnson, Dave Rygell, and Nick Haile, during August of 2013.
- **5. Cruise Method and Computation:** Areas 1 is a modified clearcut and was variable plot cruised using a 40 BAF. These plots are located on a 2 chain by 9 chain grid, with every third plot measured and graded. A total of 53 plots were sampled, with 25 measured and graded plots, and 28 count plots.

Areas 2 is a partial cut and was variable plot cruised using a 40 BAF. These plots are located on a 3 chain by 15 chain grid, with every fourth plot measured and graded. A total of 38 plots were sampled, with 12 measured and graded plots, 20 count plots, and 6 blank plots. Red alder, Sitka Spruce and cedar are reserve species and were recorded as leave trees.

All cruisers used Corvallis MicroTechnology (CMT) data collectors. Data was downloaded to the Atterbury <u>Super A.C.E.</u> program for computations. See the attached <u>Cruise Design</u> for more details on the cruise method. The cruise calculations were processed in the Astoria district office.

AREA	CRUISE	TRACT	TYPE	ACRES
1	T6NR7W23	AREA 1	00MC	95
2	T6NR7W23	AREA 2	00PC	167
R/W	T6NR7W27	AREA 1	R/W	3

6. Timber Description: Area 1 is a modified clearcut, approximately 73 years old, dominated by Douglas-fir, red alder, and minor amounts of western hemlock. The average Douglas-fir tree size to be harvested is 29 inches DBH, with an average bole height of 103 feet to a merchantable top (8 inch d.i.b.). The average red alder tree size is 17 inches DBH and bole height of 44 feet to a merchantable top (10 inch d.i.b.). The average western hemlock tree size to be harvested in 22 inches DBH and bole height of 80 feet to a merchantable top (8 inch d.i.b.). The average volume per acre to be harvested (net) is 46.9 mbf.

Area 2 is a partial cut, approximately 75 years old, dominated by Douglas-fir, western hemlock, and minor amounts of Sitka Spruce. The average Douglas-fir tree size to be harvested is 23 inches DBH, with an average bole height of 102 feet to a merchantable top (8 inch d.i.b.). The average western hemlock tree size is 17.5 inches DBH and bole height of 57 feet to a merchantable top (8 inch d.i.b.). The average Sitka Spruce tree size is 13.0 inches DBH and bole height of 30 feet to a merchantable top (8 inch d.i.b.) The average volume per acre to be harvested (net) is 31.5 mbf.

<u>Area 3</u> (Right-of-Way) totals three acres of in-sale right-of-way. The timber type is similar to Sale Area 1 therefore the average cruise volume (net) from Area 1 was applied to these acres. The average volume per acre to be harvested is 46.9 mbf.

7. Statistical Analysis and Stand Summary: (See "Statistics" - Type Reports, attached Statistics for Stand B.F. volumes

Areas	Estimated CV	Target SE%	Actual CV	Actual SE%
1 (MC)	55%	8%	46.2%	6.3%
2 (PC)	40%	10%	35.4%	5.7%

8. Volumes by Species and Log Grade: (See "Species, Sort, Grade" - Project Report, attached). Volumes by Species and Grade for All Sale Areas: (MBF) Volumes do not include "in-growth."

Species*	DBH	Net Vol.	2 Saw	3 Saw	4 Saw	Camp Run	% D & B	% Sale
Douglas-fir	25.3"	8,116	7,128	910	78	0	1%	82%
Hemlock/True-fir	17.9"	1,135	688	254	193	0	1%	12%
Red alder/Hardwoods	17.4"	598	0	0	0	598	1%	6%
Spruce	14.8"	14	8	2	4	0	<1%	0%
TOTALS		9,863	7,824	1,166	275	598		100%

9		Α	p	pr	οv	al	s	
_	-		1-1			•	_	-

Prepared by: Jenny Johnson

Unit Forester Approval:

Date: 09/17/2013

Date:<u>/0/4//3</u>

10. Attachments:

Cruise Design and Map – 7 pages

Volume Report - 4 pages Statistics Reports - 6 pages Log Stock Table - 7 pages

Stand Table Summary (Leave) - 1 page

X:\Jewell_Unit\Timber Sales\2014\Jarvie Combo\Sale_Prep\Cruise_Report_Jarvie_Combo.docx

CRUISE DESIGN ASTORIA DISTRICT

Sale Name:Jarvie Co	<u>Area(s) 1</u>
Harvest Type: (MC) "M	odified Clearcut"
Approx. Cruise Acres:	_98 Estimated CV% _55% Net BF SE% Objective 8 Net BF
Planned Sale Volume: _3	8,193 MBF Estimated Sale Area Value/Acre: \$16,215 (47 mbf acre.)
(b) Sample <u>54</u> cruis "automark" thinning st	rade minimum 100 trees. se plots (18 grade/36 count); (c) Other goals (X Determine randards; X Determine log grades for sale value; X eave tree species and sizes.
Cru Cru	F 40 (Full point) Half point) (circle one) uise Line Direction(s) Area 1 AZ= 90 deg. (West/East) uise Line Spacing9 (chains) uise Plot Spacing2 (chains)
	ade/Count Ratio 1/2
	as camp run. Record all cedar as leave trees. Record all snags as

C. <u>Tree Measurements</u>:

outside the buffer

- **1. Diameter:** Minimum DBH to cruise is <u>8</u>" for conifers and <u>10</u>" for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- **2. Bole Length:** Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

- **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.
- 6. Species, Sort, and Grade Codes:
- A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)
- B. <u>Sort</u>: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camprun; 0 = Cull
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by:	Jenny Johnson	
Approved by:		
Date:	<u>8/5/2013</u>	

CRUISE DESIGN ASTORIA DISTRICT

Sale Name:Jarvie	e Combo			Area(s) 2
Harvest Type: (PC)	"Partial` Cut"			
Approx. Cruise Acre	es: <u>171</u> Estima	ted CV% _40%	Net BF S	E% Objective <u>10</u> Net B
Planned Sale Volum	ne: <u>8,193 MBF</u>	Estimated Sale	e Area Value/	Acre: \$6,210 (18 mbf acre.)
A. <u>Cruise Goals</u> : (a (b) Sample 37 ("automark" thinnir Determine snag a	cruise plots (<u>12 (</u> ng standards; <u>X</u>	grade/ <u>25</u> coun Determine lo	t); (c) Other g	oals (<u>X</u> Determine sale value; <u>X</u>
B. <u>Cruise Design</u> : 1. Plot Cruises:	Cruise Line Dire	ction(s) Area 2	AZ= North/So	<u>outh</u>
	Cruise Line Space Cruise Plot Space Grade/Count Ra	cing <u>3</u> (chair		
The BA target is 1	160 saft. Leaving	4 trees every pla	ot. Do not cou	ınt Alder or cedar

The BA target is 160 sqft. Leaving 4 trees every plot. Do not count Alder or cedar toward Basal Area. Record all hardwood as camp run. Record all cedar as leave trees. Record all snags as SN and record total height and diameter. If plot lands in buffer then offset at least ½ chain outside the buffer

C. Tree Measurements:

- **1. Diameter:** Minimum DBH to cruise is <u>8"</u> for conifers and <u>10"</u> for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate.
- 2. Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable.
- 3. Top Cruise Diameter (TCD): Minimum top outside bark is <u>7"</u> for conifers and <u>7"</u> for hardwoods or <u>40</u> % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh.
- **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87.

- 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree.
- 6. Species, Sort, and Grade Codes:
- A. <u>Species</u>: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.)
- B. Sort: Use code "1" (Domestic).
- C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camprun; 0 = Cull
- 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce.
- 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at inter-visible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses.
- **9. Cruising Equipment:** Relaskop, Rangefinder, Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint.
- **10. Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale.

Cruise Design by: _	Jenny Johnson	
Approved by:		
Date:	8/5/2013	

Cruise Program Cheat Sheet

If in C:\

- Type "cd D:\"
 - o Should now be in D:\
- Type "engmet"
 - Should now be in cruise program
- Select master
 - Select project
 - Select stand
 - Should now be in stand
- Hit button "F5" (plots)
 - Should now be in plot data
- Enter cruiser initials and plot # (ex. "DB01")
- Hit "F3" (CR)
 - Should now be ready to enter cruise information
- PF = "B1"
- A = "1"
- SPC = Species ("D" for Douglas fir "DL" for Douglas fir leave etc.)
- FP = "04"
- FF = Form factor
- TDF = Top diameter ("4" for 40%, "G" for 7 inch top, "H" for 8 inch top etc.)

Defect Deductions

-Percentage = first two digits then 00 and enter 1 to designate percentage. i.e. for a 2% deduction would look like 02001, or a 10% deduction would look like 10001

-Foot = enter the foot deduct in the first column. i.e. 5 foot deduct you would enter 5 in the first column. 10 foot deduct you would enter 1 in the first column and 0 in the second column.

Grades

			0.40				
Alder	2S	3S	48	Douglas fir	28	3S	48
Min Diameter	12	10	5	Min Diameter	12	6	5
% Clear	50%			Board Feet	60	50	10

Form Factor (all bars = 18)

Bars	FF
17.5	97
17	94
16.5	92
16	89
15.5	86
15	83
14.5	81

T06N F	R07W S23 R07W S23 R07W S23	3 TyTAI	KE !	3.00 95.00 67.00		Project: Acres		MO 265.0	00]	Page Date Time	10/4/20 10:33:	
		%				<u> </u>	Perc	ent of	Net B	oard F	oot Volu	ıme				Average	e Log	Lo
S	So Gr	Net	Bd. Ft	t. per Acre	;	Total	L	og Sca	le Dia			Log I	ength		Ln	Bd	CF/	Pε
Spp T	rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30	31-35	36-99	Ft	Ft	Lf	/A
D	DOCU														10		0.00	
	DO2S	87	.6	27,064	26,898	7,128			32	68	1	0	7	92	39	460	2.46	1
	DO3S	12	.3	3,443	3,434	910		96	4		8	17	24	51	32	88	0.82	
	DO4S	1		294	294	78		100			56	37		7	18	28	0.54	
D Tota	ls	82	.6	30,802	30,626	8,116		12	29	59	2	2	9	87	33	270	1.79	1
	DOCU DOCR Is	100	.3	2,252	2,245 2,245	595 595		56 56	33	10	25 25	14	31	29 29	6 27 26	86 80	0.00 1.02 1.00	
M	DOCR	100		13	13	3	100						100		35	40	0.83	
M Tota	ıls	0	· · · · · · · · · · · · · · · · · · ·	13	. 13	3	100						100		35	40	0.83	
S S	DOCU DO2S DO3S DO4S	59 13 28		31 7 14	31 7 14	8 2 4	100	100		100		100	100	100	10 32 38 29	480 110 20	0.00 2.78 1.26 0.52	
S Total	s	0		53	53	. 14	27	14		59		27	59	14	29	58	0.76	
H H	DOCU DO2S DO3S DO4S	60 22 18	.2	2,599 957 731	2,595 957 731	688 254 1943		61 68	13 39 27	87 4	5 15	15 28	33 22	67 57 57	6 37 32 27	574 126 59	0.00 2.96 1.08 0.67	
H Tota	ls	12	.1	4,288	4,283	1,135		25	21	54	4	8	25	63	30	172	1.32	

Т	TSPCSTO	GR			Species	, Sort G Projec	rade - Boai t: JAR	rd Fo RVIEP		oluı	nes (T	Гуре)]	Page Date Fime	1 9/26/2 10:46:	
T06 Tv	-	S23 T ge 7W	Sec	Tract AREA1		Туре ТАН			Plot 53		_	le Trees	S	C 1	uFt	T06 BdI W		W S23	ГТАКІ
			%					Perc	cent N	Vet B	oard Fo	oot Volu	ıme			Av	erage 1	Log	T
	s so	Gr	Net	Bd.	Ft. per A	cre	Total	Lo	og Sca	ale D	ia.	Log	g Le:	ngth		Ln	Bd	CF/	Log Po
Spp	T rt	ad	BdFt	Def%	Gross	Net	Net MBF	4-5			6 17+	12-20		_	36-99	Ft	Ft	Lf	/Ac
D	DO	CU	1													7		0.00	
D	DO	2S	91	.8	36,202	35,926	3,413			22	78	1	0	9	89	38	569	3.03	6
D	DO	3S	8	.8	3,195	3,170	301		89	11		9	32	24	35	30	100	0.98	3
D	DO	4S	1		329	329	31		100			64	20		16	18	36	0.64	
D	Totals		84	.8	39,726	39,424	3,745		8	20	72	3	3	10	84	33	364	2.34	10
A	DO	CU		***************************************							***************************************					6		0.00	
A	DO	CR	100	.3	6,090	6,072	577		56	33	10	25	14	31	29	27	86	1.02	7
A	Totals		13	.3	6,090	6,072	577		56	33	10	25	14	31	29	26	80	1.00	7
Н	DO	CU														6		0.00	
Н	DO	2S	73		968	968	92			44	56			18	82	37	344	2.12	
Н	DO	3S	16		222	222	21		100			63	14	23		21	63	0.83	
Н	DO	48	11		133	133	13		36		64	16	84			21	76	0.96	
Н	Totals		3		1,322	1,322	126		20	32	47	12	11	17	60	26	157	1.47	
M	DO	CR	100		34	34	3	100			:			100		35	40	0.83	
M	Totals		0		34	34	3	100						100		35	40	0.83	
S	DO	CU			**************************************											10		0.00	
S	DO	2S	81	ľ	85	85	8				100			100		32	480	2.78	
S	DO	3S	19		19	19	2		100						100	38	110	1.26	
S	Totals		0		104	104	10		19		81			81	19	27	197	1.71	
	Totals	C. CONSTRUCTO NAMES AND		.7	47,276	46,956	4,461	0	15	22	63	6	5	13	76	30	242	1.85	19

Т	TSPCSTG	R			Species	, Sort G Projec	Frade - Boar et: JAF	rd Fo RVIEP		⁷ olu	mes ('	Гуре)					Page Date Fime	1 9/26/2 10:46:	
T06 Tw	-	ge	Sec	Tract AREA1		Type RW		es 00	Plot		_	le Tree	s	(CuFt	T00 Bdl W		7W S23 T	ΓRW
			%					Perc	ent N	Vet B	oard Fo	oot Vol	ume			A	erage	Log	Logg
Spp		Gr ad	Net BdFt	Bd. Def%	Ft. per Ad Gross	ore Net	Total Net MBF	Lo 4-5	g Sc 6-11		ia. 6 17+	Log	g Lei 21-30	_	5 36-99	Ln Ft	Bd Ft	CF/ Lf	Logs Per /Acre
D	DO	CU														7		0.00	4.2
D	DO	2S	91	.8	36,202	35,926	108			22	78	1	0	9	89	38	569	3.03	63.
D	DO	3S	8	.8	3,195	3,170	10		89	11		9	32	24	35	30	100	0.98	31.8
D	DO	4S	1		329	329	1		100			64	20		16	18	36	0.64	9.2
D	Totals		84	.8	39,726	39,424	118		8	20	72	3	3	10	84	33	364	2.34	108.3
A	DO	CU														6		0.00	4.8
A	DO	CR	100	.3	6,090	6,072	18		56	33	10	25	14	31	29	27	86	1.02	70.9
A	Totals		13	.3	6,090	6,072	18		56	33	10	25	14	31	29	26	80	1.00	75.7
Н	DO	CU											4.0000			6		0.00	.3
Н	DO	2S	73		968	968	3			44	56			18	82	37	344	2.12	2.8
Н	DO	3S	16		222	222	1		100			63	14	23		21	63	0.83	3.5
Н	DO	4S	11		133	133	0		36		64	16	84			21	76	0.96	1.7
Н	Totals		3		1,322	1,322	4		20	32	47	12	11	17	60	26	157	1.47	8.4
M	DO	CR	100		34	34	0	100						100		35	40	0.83	.9
M	Totals		0		34	34	0	100			-			100		35	40	0.83	.9
S	DO	CU														10		0.00	.2
S	DO	2S	81		85	85	0				100			100	,	32	480	2.78	.2
S	DO	3S	.19		19	19	0]	100						100	38	110	1.26	.2
S	Totals		0		104	104	0		19		81			81	19	27	197	1.71	.5
Туре Т	Totals			.7	47,276	46,956	141	0	15	22	63	6	5	13	76	30	242	1.85	193.8

T	TSPCSTG	R			Species,	Sort G Projec	rade - Boar t: JAR	rd Fo		olur	nes (T	Гуре)				1	Page Date Time	9/26/2 10:46:	
T06 Tv	_	ge	Sec	Tract		Туре ТАІ			Plot		Samp	le Tree 45	s	C 1	uFt	T06 BdI W		W S23	TTAKE
	****		%				_	Per	cent N	let Bo	oard Fo	oot Vol	ume			Av	erage 1	Log	Logs
Spp		Gr ad	Net BdFt	Bd. Def%	Ft. per Ac Gross	ore Net	Total Net MBF	Lo 4-5	og Sca 6-11		ia. 6 17+	Log	g Ler 21-30	_	36-99	Ln Ft	Bd Ft	CF/ Lf	Per /Acre
D	DO	CU														11		0.00	6.1
D	DO	2S	84	.5	21,702	21,600	3,607			43	57	-		5	95	39	388	2.10	55.
D	DO	3S	14		3,589	3,589	599		100			8	9	24	59	33	83	0.75	43.2
D	DO	4S	2		274	274	. 46		100			51	49			19	25	0.50	11.2
D	Totals		81	.4	25,565	25,463	4,252		15	36	48	2	2	7	89	33	219	1.49	116.2
Н	DO	CU														. 6		0.00	.0
Н	DO	2S	58	.2	3,557	3,550	593			8	92			36	64	37	643	3.22	5.5
Н	DO	3S	24		1,389	1,389	232		57	43			15	22	62	35	140	1.11	9.9
Н	DO	4S	18		1,082	1,082	181		71	29		15	24		61	27	58	0.66	18.5
Н	Totals		19	.1	6,028	6,021	1,006		26	20	54	3	8	26	63	30	174	1.30	34.5
S	DO	4S	100		23	23	4	100					100			29	20	0.52	1.1
S	Totals		0		23	23	4	100					100			29	20	0.52	1.1
Туре	Totals			.3	31,616	31,507	5,262	0	17	33	50	2	3	11	84	33	207	1.44	151.9

TC PSTATS					JECT S OJECT		ISTICS RVIEM			PAGE DATE	1 9/17/2013
TWP RGE	SC	TRACT		TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
06N 07	23	AREA1		00MC			95.00	53	342	1	W
					TREES		ESTIMATED TOTAL	S	ERCENT SAMPLE		
	F	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		53	342		6.5						
CRUISE DBH COUNT	Γ	25	119		4.8		8,504		1.4		
REFOREST COUNT BLANKS		28	168		6.0						
100 %											
					ND SUMM		DAGAI	CDOGG	NET	CDOGG	NIET
		AMPLE FREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG FIR	-	67	35.6	29.1	103		164.5	39,726	39,424	8,347	8,347
R ALDER		35	45.8	17.4	44		75.5	6,090	6,072	1,935	1,935
SNAG		11	4.3	18.9	26		8.3	•	,	-	•
WHEMLOCK	ζ.	4	2.8	22.2 -	80 _		7.5	1,322	1,322	316	316
BL MAPLE		1	.9	18.0	35		1.5	34	34	25	25
S SPRUCE		1	.2	28.0	82		.8	104	104	24	24
TOTAL		119	89.5	23.0	68		258.1	47,276	46,956	10,647	10,647
CONFIDEN	8.1 T	TIMES OU	T OF 100 T	HE VOLUI	ME WILL I	3E WII	HIN THE SAN	II DE DIGICO			
	8.1 Т	COEFF VAR.%	S.E.%		SAMPLI				OF TREES	REQ.	INF. POP.
CL 68.1	8.1 Т	COEFF		LO	SAMPLI OW	E TREE	S - BF		OF TREES	•	
CL 68.1 SD: 1.0	8.1 Т	COEFF VAR.%	S.E.%	LO	SAMPLI OW	E TREE AVG	S - BF HIGH		OF TREES	•	
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE		COEFF VAR.% 46.4	S.E.% 5.7	LO	SAMPLI DW 1,274	E TREE AVG 1,350	S - BF HIGH 1,427		OF TREES	•	
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK		COEFF VAR.% 46.4 77.3	S.E.% 5.7 13.1	LO	SAMPLI OW 1,274 148	E TREE AVG 1,350 170	S - BF HIGH 1,427 192		OF TREES	•	
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE		COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF	S.E.% 5.7 13.1 37.5	LC	SAMPLI DW 1,274 148 415 768 SAMPLI	E TREE AVG 1,350 170 665	S - BF HIGH 1,427 192 915 908 S - CF	#	OF TREES 5 332 OF TREES	10 83 REQ.	37 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0		COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.%	S.E.% 5.7 13.1 37.5 8.3 S.E.%	LC	SAMPLI DW 1,274 148 415 768 SAMPLI	E TREE AVG 1,350 170 665 838 E TREE AVG	S - BF HIGH 1,427 192 915	#	OF TREES 5	10	37
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR		COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266	E TREE AVG 1,350 170 665 838 E TREE AVG 278	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291	#	OF TREES 5 332 OF TREES	10 83 REQ.	37 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER		COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.%	S.E.% 5.7 13.1 37.5 8.3 S.E.%	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW	E TREE AVG 1,350 170 665 838 E TREE AVG	S - BF HIGH 1,427 192 915 908 S - CF HIGH	#	OF TREES 5 332 OF TREES	10 83 REQ.	37 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE	<u> </u>	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266	E TREE AVG 1,350 170 665 838 E TREE AVG 278	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291	#	OF TREES 5 332 OF TREES	10 83 REQ.	37 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK	<u> </u>	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48	E TREE AVG 1,350 170 665 838 E TREE AVG 278 53	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58	#	OF TREES 5 332 OF TREES	10 83 REQ.	37 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE	<u> </u>	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102	E TREE AVG 1,350 170 665 838 E TREE AVG 278 53 152	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202	#	OF TREES 5 332 OF TREES 5	83 REQ. 10	37 INF. POP. 15
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 CK 68.1 CK 68.1	<u> </u>	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A	E TREE AVG 1,350 170 665 838 E TREE AVG 278 53 152	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 192 HIGH	#	OF TREES 5 332 OF TREES 5	83 REQ. 10	37 INF. POP. 15
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1	<u> </u>	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 79.4 COEFF VAR.% 67.3	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32	E TREE AVG 1,350 170 665 838 E TREE AVG 278 53 152 179 ACRE AVG 36	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 192 HIGH 39	#	OF TREES 5 332 OF TREES 5	83 REQ. 10 63 REQ.	37 INF. POP. 15
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SOR UCE TOTAL	<u> </u>	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 COEFF VAR.% 67.3 104.3	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3	LC	SAMPLE DW 1,274 148 415 768 SAMPLE DW 266 48 102 166 TREES/ADW 32 39	E TREE AVG 1,350 170 665 838 E TREE AVG 278 53 152 179 ACRE AVG 36 46	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52	#	OF TREES 5 332 OF TREES 5	83 REQ. 10 63 REQ.	37 INF. POP. 15
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG UHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG	<	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 COEFF VAR.% 67.3 104.3 279.1	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3 38.3	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32 39 3	ETREE AVG 1,350 170 665 ETREE AVG 278 53 152 179 CRE AVG 36 46 4	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52 6	#	OF TREES 5 332 OF TREES 5	83 REQ. 10 63 REQ.	37 INF. POP. 15
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG UHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK	<	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 COEFF VAR.% 67.3 104.3 279.1 299.9	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3 38.3 41.2	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32 39 3 2	E TREE AVG 1,350 170 665 838 E TREE AVG 278 53 152 179 ACRE AVG 36 46 4 3	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52 6 4	#	OF TREES 5 332 OF TREES 5	83 REQ. 10 63 REQ.	37 INF. POP. 15
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE	<	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 79.4 COEFF VAR.% 67.3 104.3 279.1 299.9 509.8	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3 38.3 41.2 70.0	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32 39 3 2	E TREE AVG 1,350 170 665 838 E TREE AVG 278 53 152 179 ACRE AVG 36 46 4 3 1	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52 6 4 1	#	OF TREES 5 332 OF TREES 5	83 REQ. 10 63 REQ.	37 INF. POP. 15 28 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE	<	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 79.4 COEFF VAR.% 67.3 104.3 279.1 299.9 509.8 728.0	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3 38.3 41.2 70.0 99.9	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32 39 3 2 0 0	E TREE AVG 1,350 170 665 838 E TREE AVG 278 53 152 179 ACRE AVG 36 46 4 3 1 0	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52 6 4	#	OF TREES 5 332 OF TREES 5 252 OF PLOTS	83 REQ. 10 63 REQ.	37 INF. POP. 15 28 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL	<	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 79.4 COEFF VAR.% 67.3 104.3 279.1 299.9 509.8	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3 38.3 41.2 70.0	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32 39 3 2 0 0 85	E TREE AVG 1,350 170 665 838 E TREE AVG 278 53 152 179 ACRE AVG 36 46 4 3 1 0 90	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52 6 4 1 0 94	#	OF TREES 5 332 OF TREES 5 252 OF PLOTS 5	83 REQ. 10 63 REQ. 10	37 INF. POP. 15 INF. POP. 15 7
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 CL 68.1	<	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 COEFF VAR.% 67.3 104.3 279.1 299.9 509.8 728.0 39.7 COEFF	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3 38.3 41.2 70.0 99.9 5.4	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32 39 3 2 0 0 85 BASAL A	ETREE AVG 1,350 170 665 838 ETREE AVG 278 53 152 179 ACRE AVG 36 46 4 4 3 1 0 90 AREA/A	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52 6 4 1 0 94 ACRE	#	OF TREES 5 332 OF TREES 5 252 OF PLOTS 5	83 REQ. 10 63 REQ. 10	37 INF. POP. 15 INF. POP. 7 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 CK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 CK BL MAPLE S SPRUCE TOTAL CL 68.1	<	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 79.4 COEFF VAR.% 67.3 104.3 279.1 299.9 509.8 728.0 39.7 COEFF VAR.%	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3 38.3 41.2 70.0 99.9 5.4 S.E.%	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32 39 3 2 0 0 85 BASAL A	ETREE AVG 1,350 170 665 838 ETREE AVG 278 53 152 179 ACRE AVG 36 46 4 4 3 1 0 90 AREA/A	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52 6 4 1 0 94	#	OF TREES 5 332 OF TREES 5 252 OF PLOTS 5	83 REQ. 10 63 REQ. 10	37 INF. POP. 15 28 INF. POP. 15
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR	<	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 COEFF VAR.% 67.3 104.3 279.1 299.9 509.8 728.0 39.7 COEFF	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3 38.3 41.2 70.0 99.9 5.4	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32 39 3 2 0 0 85 BASAL A DW	ETREE AVG 1,350 170 665 838 ETREE AVG 278 53 152 179 ACRE AVG 36 46 4 4 3 1 0 90 AREA/A	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52 6 4 1 0 94 ACRE HIGH	#	OF TREES 5 332 OF TREES 5 252 OF PLOTS 5	83 REQ. 10 63 REQ. 10	37 INF. POP. 15 INF. POP. 7 INF. POP.
CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 DOUG FIR R ALDER SNAG WHEMLOCK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 CK BL MAPLE S SPRUCE TOTAL CL 68.1 SD: 1.0 CK BL MAPLE S SPRUCE TOTAL CL 68.1	<	COEFF VAR.% 46.4 77.3 65.7 91.2 COEFF VAR.% 37.8 56.5 57.9 COEFF VAR.% 67.3 104.3 279.1 299.9 509.8 728.0 39.7 COEFF VAR.% 60.4	S.E.% 5.7 13.1 37.5 8.3 S.E.% 4.6 9.5 33.1 7.3 S.E.% 9.2 14.3 38.3 41.2 70.0 99.9 5.4 S.E.% 8.3	LC	SAMPLI DW 1,274 148 415 768 SAMPLI DW 266 48 102 166 TREES/A DW 32 39 3 2 0 0 85 BASAL A DW 151	ETREE AVG 1,350 170 665 838 ETREE AVG 278 53 152 179 ACRE AVG 36 46 4 3 1 0 90 AREA/A	S - BF HIGH 1,427 192 915 908 S - CF HIGH 291 58 202 HIGH 39 52 6 4 1 0 94 ACRE HIGH 178	#	OF TREES 5 332 OF TREES 5 252 OF PLOTS 5	83 REQ. 10 63 REQ. 10	37 INF. POP. 15 28 INF. POP. 15

TC PS	TATS				PROJEC'	T STAT	TISTICS			PAGE	2
		*******			PROJECT	Γ JA	RVIEM			DATE	9/17/2013
TWP	RGE	\mathbf{SC}	TRACT	.]	ГҮРЕ	A	CRES	PLOTS	TREES	CuF	t BdFt
06N	07	23	AREA1	(00MC		95.00	53	342	! 1	W
CL	68.1		COEFF		BASA	L AREA	ACRE/		# OF PLO	OTS REQ.	INF. POP.
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
BL M	IAPLE		509.8	70.0	0	2	3				
S SPI	RUCE		728.0	99.9	0	1	2				
TOT	AL .		27.1	3.7	249	258	268		29	7	3
CL	68.1		COEFF		NET :	BF/ACRE	1	7	# OF PLOTS	REO.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	G FIR		61.2	8.4	36,111	39,424	42,737				
R AL	DER		101.8	14.0	5,223	6,072	6,920				
SNAC	3										
WHE	MLOCK		293.2	40.2	790	1,322	1,854				
BL M	APLE		509.8	70.0	10	34	58				
S SPF	RUCE		728.0	99.9	0	104	208				
TOTA	AL		46.2	6.3	43,977	46,956	49,935		85	21	9
CL	68.1		COEFF		NET (CUFT FT/	ACRE	#	OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOUG	G FIR		61.3	8.4	7,645	8,347	9,049				
R ALI	DER		99.9	13.7	1,670	1,935	2,200				
SNAC	j										
WHE	MLOCK		292.7	40.2	189	316	443				
BL M	APLE		509.8	70.0	7	25	42				
S SPR			728.0	99.9	0	24	48				
TOTA	A L		41.3	5.7	10,043	10,647	11,251		68	17	8

TC PS	TATS					OJECT S ROJECT		ISTICS RVIEP			PAGE DATE	1 9/26/2013
TWP	RGE	SC	TRACT		TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
06N	07	23	AREA2		00PC			167.00	38	314	1	W
						TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		F	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTA			38	314		8.3						
CRU			20	114		5.7		20,603		.6		
I	COUNT											
COU			18	128		7.1						
BLA												
100 %	6											
					STA	ND SUMN	MARY					
			MPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		7	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
l .	GLEAV		46	28.0	30.6	118		143.2	41,133	40,911	8,151	8,147
1	G FIR MLOCK		34 10	39.6 18.9	23.1 17.5	102 57		114.7 31.6	25,565 6,028	25,463 6,021	5,784 1,367	5,784 1,367
SNA			14	12.6	14.6	26		14.7	0,020	0,021	1,507	1,507
Į.	LEAV		2	5.9	20.7	50		13.7	1,619	1,580	442	442
1	RLEAV		7	17.2	11.1	27		11.6	578	557	204	204
1	RUCE		1	1.1	13.0	30		1.1	23	23	17	17
TOT	AL		114	123.4	22.2	77		330.5	74,946	74,555	15,964	15,960
CON	IFIDENC 68			THE SAMP T OF 100 T		ME WILL	BE WIT	HIN THE SAM	MPLE ERR	OR		ED4000000000000000000000000000000000000
CL	68.1		COEFF			SAMPL	E TREE	S - BF	7	OF TREES		INF. POP.
SD:	1.0		VAR.%	S.E.%	I	LOW	AVG	HIGH		5	10	15
1	GLEAV G FIR		66.0 54.3	9.7 9.3		1,590 723	1,761 797	1,932 871				
1	MLOCK		100.6	33.5		489	735	981				
SNA	G											
1	LEAV		126.3	118.3		20	375	819				
1	RLEAV RUCE		33.1	13.5		30	34	39				
TOT.			102.1	9.6		924	1,022	1,119		416	104	46
			COEFF	7.0						# OF TREES		INF. POP.
SD:	68.1 1.0		VAR.%	S.E.%	ī	SAMPL LOW	e ikee AVG	S - CF HIGH	7	5 5	10	15
	GLEAV		55.9	8.2		314	342	370				
1	G FIR		45.8	7.8		163	176	190				
	MLOCK		87.1	29.0		108	152	196				
SNA			100 6	04.2		6	07	188				
l	LEAV RLEAV		100.6 38.2	94.2 15.6		6 11	97 13	188	•			
l	RUCE		50.2	13.0		**	1.5	10				
тот			89.3	8.4		189	206	224		319	80	35
CL	68.1		COEFF			TREES/	ACRE		7	OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	I	LOW	AVG	HIGH		5	10	15
ŀ	GLEAV		27.8	4.5		27	28	29				
i .	G FIR		89.4 156.0	14.5		34 14	40 19	45 24				
SNA	MLOCK G		156.9 169.6	25.4 27.5		9	13	24 16				
	LEAV		229.2	37.2		4	6	8				
	RLEAV		365.0	59.2		7	17	27				
	RUCE		616.4	99.9		0	1	2		<i>a</i> 1	10	•
тот	AL		42.3	6.9		115	123	132		71	18	8
	68.1		COEFF			BASAL			#	FOF PLOTS		INF. POP.
SD:	1.0		VAR.%	S.E.%	I	.OW	AVG	HIGH		5	10	15

TC PSTATS

PROJECT STATISTICS PROJECT JARVIEP

PAGE 2 DATE 9/26/2013

TWP	RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	S CuF	t BdFt
06N	07	23	AREA2	00F	PC		167.00	38	3	14 1	W
DOU	GLEAV		23.1	3.7	138	143	149				
	G FIR		85.8	13.9	99	115	. 131				
WHE	EMLOCK		161.7	26.2	23	32	40				
SNA			159.9	25.9	11	15	19				
	LEAV		228.2	37.0	9	14	19				
	RLEAV		358.4	58.1	5	12	18				
	RUCE		616.4	99.9	0	1	2				
ТОТ	AL		21.0	3.4	319	331	342		18	4	2
CL	68.1		COEFF		NET	BF/ACRE		#	OF PLOT	TS REO.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOU	GLEAV		23.4	3.8	39,359	40,911	42,462				
DOU	G FIR		87.3	14.1	21,861	25,463	29,066				
WHE	MLOCK		172.3	27.9	4,340	6,021	7,702				
SNAC	3										
HEM	LEAV		234.7	38.0	979	1,580	2,181				
ALDF	RLEAV		344.5	55.8	246	557	868				
S SPR	RUCE		616.4	99.9	0	23	46				
TOTA	AL		35.4	5.7	70,282	74,555	78,828		50	12	6
CL	68.1		COEFF		NET	CUFT FT/	ACRE	#	OF PLOT	S REO.	INF. POP.
SD:	_1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DOUG	GLEAV		23.2	3.8	7,841	8,147	8,453				
DOUG	G FIR		87.0	14.1	4,968	5,784	6,600				
WHE	MLOCK		167.7	27.2	995	1,367	1,738				
SNAG	j										
HEMI	LEAV		230.8	37.4	276	442	607				
ALDR	RLEAV		342.3	55.5	91	204	317				
S SPR	UCE		616.4	99.9	0	17	34				
TOTA	AL		35.2	5.7	15,050	15,960	16,870		49	12	5

TC PSTAT	TS				DJECT (ROJECT		ISTICS RVIEP			PAGE DATE	1 9/17/2013
TWP F	RGE	SC TRA	CT	TYPE		AC	CRES	PLOTS	TREES	CuFt	BdFt
	7	23 AREA		RW			265.00	144	813	1	W
	7W	23 AREA		TAKE							
06N 0°	7W	23 AREA	12	TAKE							
					TREES		ESTIMATED TOTAL		PERCENT SAMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		144	813		5.6						·
CRUISE		56	272		4.9		18,318		1.5		
DBH CC							•				
REFORI	EST										
COUNT		82	472		5.8						
BLANK	.S	6									
100 %											
					AND SUMI						
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS BE/AC	NET PE/AC	GROSS	NET CE/AC
D.O.T.		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG F		168 70		25.3 17.4	102 44		133.2 27.9	30,802 2,252	30,626 2,245	6,732 716	6,732 716
R ALDE WHEMI		18		17.4	44 59		27.9	4,288	4,283	978	978
SNAG	JOOK	. 11		18.9	26		.1	,,200	.,205	210	210
BL MAF	PLE	2		18.0	35		.6	13	13	9	9
S SPRU	CE	3	.8	14.8	34		.9	53	53	20	20
TOTAL	4	272	69.1	22.2	79		185.3	37,407	37,220	8,454	8,454
	68				11111 111111	DD 11111	HIN THE SAN				
CL 6	8.1	COE	FF		SAMPL				OF TREES	REQ.	INF. POP.
SD:	1.0	VAR	% S.E.%	L	SAMPL LOW	E TREE AVG	S - BF HIGH			REQ.	
SD. DOUG F	1.0 FIR	VAR	S.E.% 9 3.9	L	SAMPL OW 1,190	E TREE AVG 1,238	S - BF HIGH 1,287		OF TREES		
SD: DOUG F R ALDE	1.0 FIR ER	VAR 50. 76.	S.E.% 9 3.9 7 9.2	L	SAMPL OW 1,190 154	E TREE AVG 1,238 170	S - BF HIGH 1,287 185		OF TREES		
SD: DOUG F R ALDE WHEMI	1.0 FIR ER	VAR	S.E.% 9 3.9 7 9.2	L	SAMPL OW 1,190	E TREE AVG 1,238	S - BF HIGH 1,287		OF TREES		
SD: DOUG F R ALDE	1.0 FIR ER LOCK	VAR 50. 76.	S.E.% 9 3.9 7 9.2	L	SAMPL OW 1,190 154	E TREE AVG 1,238 170	S - BF HIGH 1,287 185		OF TREES		
SD: DOUG F R ALDE WHEMI SNAG	1.0 FIR ER LOCK	VAR 50. 76.	S.E.% 9 3.9 7 9.2 0 20.6	L	SAMPL LOW 1,190 154 559	E TREE AVG 1,238 170 704	S - BF HIGH 1,287 185 849		OF TREES 5		
SD: DOUG F R ALDE WHEMI SNAG BL MAF	1.0 FIR ER LOCK PLE CE	VAR 50. 76. 85.	S.E.% 9 3.9 7 9.2 0 20.6	L	SAMPL OW 1,190 154 559	E TREE AVG 1,238 170 704 40	S - BF HIGH 1,287 185 849		OF TREES		15
SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUC TOTAL	1.0 FIR ER LOCK PLE CE	VAR 50. 76. 85.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1	L	SAMPL .OW 1,190 154 559 40 172	E TREE AVG 1,238 170 704 40 400 860	S - BF HIGH 1,287 185 849 40 628 904	#	OF TREES 5	10 71	15
SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUC TOTAL CL 6 SD:	1.0 FIR ER LOCK PLE CE 	VAR 50. 76. 85.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1	L	SAMPL OW 1,190 154 559 40 172 816	E TREE AVG 1,238 170 704 40 400 860	S - BF HIGH 1,287 185 849 40 628 904	#	OF TREES 5	10 71	31 INF. POP.
SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F	1.0 FIR ER LOCK PLE CE 4 8.1 1.0	VAR 50. 76. 85. 82 84.1 COE VAR	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF -% S.E.% 0 3.2	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266	#	OF TREES 5 282 OF TREES	10 71 REQ.	31 INF. POP.
SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUC TOTAL CL 6 SD: DOUG F R ALDE	1.0 FIR ER LOCK PLE CE 4 8.1 1.0 FIR ER	VAR 50. 76. 85. 82. 84.1 COE VAR 42. 56.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF% S.E.% 0 3.2 1 6.7	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249 49	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57	#	OF TREES 5 282 OF TREES	10 71 REQ.	31 INF. POP.
SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI	1.0 FIR ER LOCK PLE CE 4 8.1 1.0 FIR ER	VAR 50. 76. 85. 82 84.1 COE VAR	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF% S.E.% 0 3.2 1 6.7	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266	#	OF TREES 5 282 OF TREES	10 71 REQ.	31 INF. POP.
SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUC TOTAL CL 6 SD: DOUG F R ALDE	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK	VAR 50. 76. 85. 82. 84.1 COE VAR 42. 56.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF% S.E.% 0 3.2 1 6.7	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249 49	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57	#	OF TREES 5 282 OF TREES	10 71 REQ.	31 INF. POP.
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK	VAR 50. 76. 85. 82. 84.1 COE VAR 42. 56.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF% S.E.% 0 3.2 1 6.7 2 17.5	L	SAMPL OW 1,190 154 559 40 172 816 SAMPL OW 249 49 125	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179	#	OF TREES 5 282 OF TREES	10 71 REQ.	31 INF. POP.
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK	VAR 50. 76. 85. 82. 84. COE VAR 42. 56. 72.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF .% S.E.% 0 3.2 1 6.7 2 17.5	L	SAMPL OW 1,190 154 559 40 172 816 SAMPL OW 249 49 125	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179	#	OF TREES 5 282 OF TREES	10 71 REQ.	31 INF. POP. 15
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG SNAG SNAG	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK	VAR 50. 76. 85. 82. 84. COE VAR 42. 56. 72.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF .% S.E.% 0 3.2 1 6.7 2 17.5	L	SAMPL OW 1,190 154 559 40 172 816 SAMPL OW 249 49 125 29 48	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145	#	OF TREES 5 282 OF TREES 5	71 REQ. 10	31 INF. POP. 15
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD:	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK PLE CE 	VAR 50. 76. 85. 82 84 COE VAR 42. 56. 72	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF .% S.E.% 0 3.2 1 6.7 2 17.5	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249 49 125 29 48 176	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145	#	OF TREES 5 282 OF TREES 5	71 REQ. 10	31 INF. POP. 15 23 INF. POP.
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK PLE CE 1.0 FIR	VAR 50. 76. 85. 82. 84. COE VAR 42. 56. 72. COE VAR 153.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF .% S.E.% 0 3.2 1 6.7 2 17.5 1 50.6 8 4.4 FF .% S.E.% 1 12.7	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249 49 125 29 48 176 TREES/.OW 33	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43	#	OF TREES 5 282 OF TREES 5 209 OF PLOTS	71 REQ. 10 52 REQ.	31 INF. POP. 15 23 INF. POP.
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK PLE THE FIR ER FIR ER FIR ER ER FIR ER	VAR 50. 76. 85. 82. 84 COE VAR 42. 56. 72 COE VAR 153. 207.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF .% S.E.% 0 3.2 1 6.7 2 17.5 1 50.6 8 4.4 FF .% S.E.% 1 12.7 7 17.3	L	SAMPL OW 1,190 154 559 40 172 816 SAMPL OW 249 49 125 29 48 176 TREES/ OW 33 14	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38 17	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43 20	#	OF TREES 5 282 OF TREES 5 209 OF PLOTS	71 REQ. 10 52 REQ.	31 INF. POP. 15 23 INF. POP.
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK PLE THE FIR ER FIR ER FIR ER ER FIR ER	VAR 50. 76. 85. 82. 84. COE VAR 42. 56. 72. 73. 72.3 COE VAR 153. 207. 318.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF .% S.E.% 0 3.2 1 6.7 2 17.5 1 50.6 3 4.4 FF .% S.E.% 1 12.7 7 17.3 1 26.5	L	SAMPL OW 1,190 154 559 40 172 816 SAMPL OW 249 49 125 29 48 176 TREES/ OW 33 14 10	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38 17 13	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43 20 16	#	OF TREES 5 282 OF TREES 5 209 OF PLOTS	71 REQ. 10 52 REQ.	31 INF. POP. 15 23 INF. POP.
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK PLE CE	VAR 50. 76. 85. 82. 84. COE VAR 42. 56. 72. COE VAR 153. 207. 318. 475.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF 2% S.E.% 0 3.2 1 6.7 2 17.5 1 50.6 8 4.4 FF 1 12.7 7 17.3 1 26.5 8 39.6	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249 49 125 29 48 176 TREES/.OW 33 14 10 0	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38 17 13 0	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43 20 16 0	#	OF TREES 5 282 OF TREES 5 209 OF PLOTS	71 REQ. 10 52 REQ.	31 INF. POP. 15 23 INF. POP.
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD:	1.0 FIR ER LOCK 8.1 1.0 FIR ER LOCK 8.1 1.0 FIR ER LOCK PLE CE A 8.1 1.0 FIR ER CE CE A B CE CE A CE	VAR 50. 76. 85. 82. 84. COE VAR 42. 56. 72. 73. 72.3 COE VAR 153. 207. 318.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF	L	SAMPL OW 1,190 154 559 40 172 816 SAMPL OW 249 49 125 29 48 176 TREES/ OW 33 14 10	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38 17 13	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43 20 16	#	OF TREES 5 282 OF TREES 5 209 OF PLOTS	71 REQ. 10 52 REQ.	31 INF. POP. 15 23 INF. POP.
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD:	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK PLE ER LOCK PLE CE 8.1 1.0 FIR ER LOCK PLE CE	VAR 50. 76. 85. 82. 84. COE VAR 42. 56. 72. COE VAR 153. 207. 318. 475. 819.	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF -% S.E.% 0 3.2 1 6.7 2 17.5 1 20.6 3.2 1 7 17.5 1 20.6 3 4.4 FF -% S.E.% 1 12.7 17.3 1 26.5 8 39.6 7 68.3 8 91.9	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249 49 125 29 48 176 TREES/.OW 33 14 10 0	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38 17 13 0 0	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43 20 16 0 1	#	OF TREES 5 282 OF TREES 5 209 OF PLOTS	71 REQ. 10 52 REQ.	31 INF. POP. 15 INF. POP. 15
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL	1.0 FIR ER LOCK 8.1 1.0 FIR ER LOCK PLE CE 4 8.1 1.0 FIR ER LOCK PLE CE 4 8.1	VAR 50. 76. 85. 82. 84.1 COE VAR 42. 56. 72. COE VAR 153. 207. 318. 475. 819. 1103. 113.8	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF .% S.E.% 0 3.2 1 6.7 2 17.5 1 50.6 3 4.4 FF .% S.E.% 1 12.7 7 17.3 1 26.5 8 39.6 7 68.3 8 91.9 8 9.5	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249 49 125 29 48 176 TREES/.OW 33 14 10 0 0 0 63	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38 17 13 0 0 1 69	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43 20 16 0 1 2 76	#	OF TREES 5 282 OF TREES 5 209 OF PLOTS 5	71 REQ. 10 52 REQ. 10	31 INF. POP. 15 INF. POP. 15
DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: CL 7 S	1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK PLE CE 4 8.1 1.0 FIR ER LOCK PLE CE 4 8.1 1.0 FIR ER LOCK PLE CE 4 8.1	VAR 50. 76. 85. 82. 84. COE VAR 42. 56. 72. COE VAR 153. 207. 318. 475. 819. 1103. 113.8 COE	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF .% S.E.% 0 3.2 1 6.7 2 17.5 1 50.6 3 4.4 FF .% S.E.% 1 12.7 7 17.3 1 26.5 8 39.6 7 68.3 8 91.9 3 9.5	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249 49 125 29 48 176 TREES/.OW 33 14 10 0 0 63 BASAL	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38 17 13 0 0 1 69 AREA/A	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43 20 16 0 1 2 76 CCRE	#	OF TREES 5 282 OF TREES 5 OF PLOTS 5 517 OF PLOTS	71 REQ. 10 52 REQ. 10	31 INF. POP. 15 INF. POP. 15 INF. POP.
SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: CL 7 SD: CL	1.0 FIR ER LOCK 8.1 1.0 FIR ER LOCK 8.1 1.0 FIR ER LOCK PLE CE 8.1 1.0 FIR ER LOCK 8.1 1.0 FIR ER LOCK	VAR 50. 76. 85. 82. 84.1 COE VAR 42. 56. 72. COE VAR 153. 207. 318. 475. 819. 1103. 113.8	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF .% S.E.% 0 3.2 1 6.7 2 17.5 1 20.6 3 4.4 FF .% S.E.% 1 12.7 7 17.3 1 26.5 8 39.6 7 68.3 8 91.9 8 9.5 FF .% S.E.% S.E.%	L	SAMPL .OW 1,190 154 559 40 172 816 SAMPL .OW 249 49 125 29 48 176 TREES/.OW 33 14 10 0 0 0 63	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38 17 13 0 0 1 69	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43 20 16 0 1 2 76	#	OF TREES 5 282 OF TREES 5 209 OF PLOTS 5	71 REQ. 10 52 REQ. 10	31 INF. POP. 15 23 INF. POP. 15
SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD: DOUG F R ALDE WHEMI SNAG BL MAF S SPRUG TOTAL CL 6 SD:	1.0 FIR ER LOCK 8.1 1.0 FIR ER LOCK 8.1 1.0 FIR ER LOCK 8.1 1.0 FIR ER LOCK 9.1 1.0 FIR	VAR 50. 76. 85. 82 84 COE VAR 42. 56. 72 COE VAR 153. 207. 318. 475 819. 1103. 113.8 COE VAR	S.E.% 9 3.9 7 9.2 0 20.6 3 56.9 7 5.1 FF -% S.E.% 1 50.6 3 4.4 FF -% S.E.% 1 12.7 17.3 1 26.5 8 39.6 7 68.3 8 91.9 8 9.5 FF -% S.E.% 7 10.7	L	SAMPL OW 1,190 154 559 40 172 816 SAMPL OW 249 49 125 29 48 176 TREES/ OW 33 14 10 0 0 63 BASAL OW	E TREE AVG 1,238 170 704 40 400 860 E TREE AVG 258 53 152 29 96 184 ACRE AVG 38 17 13 0 0 1 69 AREA/A AVG	S - BF HIGH 1,287 185 849 40 628 904 S - CF HIGH 266 57 179 29 145 192 HIGH 43 20 16 0 1 2 76 CCRE HIGH	#	OF TREES 5 282 OF TREES 5 OF PLOTS 5 517 OF PLOTS	71 REQ. 10 52 REQ. 10	31 INF. POP. 15 INF. POP. 15 INF. POP.

TC PS	STATS					OJECT ROJECT		TISTICS RVIEP			PAGE DATE	2 9/17/2013
TWP	RGE	SC	TRACT		TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
06N 06N 06N	07 07W 07W	23 23 23	AREA1 AREA1 AREA2		RW TAKE TAKE			265.00	144	813	1	W
CL	68.1		COEFF			BASA	L AREA/	ACRE		# OF PLO	TS REO.	INF. POF
SD:	1.00		VAR.	S.E.%		LOW	AVG	HIGH		5	10	15
SNA	G		381.7	31.8		0	0	0				
	MAPLE		819.7	68.3		0	1	1				
	RUCE		909.9	75.8		0	1	2				
ТОТ	'AL		106.0	8.8		169	185	202		448	112	50
CL	68.1		COEFF			NET B	F/ACRE		3	# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%		LOW	AVG	HIGH		5	. 10	15
	G FIR		127.1	10.6		27,385	30,626	33,867				
R AL	DER		204.6	17.0		1,863	2,245	2,628				
WHE	EMLOCK G		331.0	27.6		3,103	4,283	5,464				
	1APLE		819.7	68.3		4	13	21				
S SPF	RUCE		905.6	75.4		13	53	93				
TOT	AL		116.0	9.7	į	33,624	37,220	40,816		538	134	60
CL	68.1		COEFF			NET C	UFT FT/	ACRE	#	FOF PLOTS	REO.	INF. POP.
SD:	1.0		VAR.%	S.E.%]	LOW	AVG	HIGH		5	10	15
DOU	G FIR		129.5	10.8		6,006	6,732	7,458				
R AL			202.2	16.8		595	716	836				
WHE	MLOCK 3		322.5	26.8		715	978	1,241				
BL M	IAPLE		819.7	68.3		3	9	15			•	
S SPR	RUCE		838.9	69.8		6	20	34				
TOTA	AL		114.2	9.5		7,651	8,454	9,258		521	130	58

 TC PLOGSTVB
 Log Stock Table - MBF

 T06N R07W S23 TYTAKE
 95.00

 T06N R07W S23 TYTAKE
 167.00

 Project:
 DEMO

 Acres
 262.00

 Date
 10/4/2013

 Time
 10:56:14AM

s	So Gr	Log	Gross	Def Net	%			Net Volu	ıme by	Scalin	g Dian	neter in	Inches				
Spp T				% MBF	Spc	2-3	4-5	6-7	8-9	10-11		1	16-19	20-23	24-29	30-39 4	0+
D	DO 2S	20	49	49	.6									49			
D	DO 2S	21	4	4	.0							4					
D	DO 2S	22	4	4	.0						4						
D	DO 2S	29	5	5	.1						5						
D	DO 2S	30	5	5	.1						5						
D	DO 2S	32	462	460	5.8						123	98	104	63	36	36	
D	DO 2S	34	5	5	.1						5						
D	DO 2S	36	32	32	.4										32		
D	DO 2S	37	6	6	.1						6						
D	DO 2S	39	6	6	.1			:			6						
D	DO 2S	40	6,487	6,446	80.6						688	761	2438	1564	951	43	
D	DO 3S	11	7	7	.1				7								
D	DO 3S	17	. 2	2	.0				2								
D	DO 3S	19	3	3	.0				3								
D	DO 3S	20	62	62	.8				3	45			14				
D	DO 3S	21	23	23	.3			5	6	12							
D	DO 3S	22	3	3	.0				3								
D	DO 3S	23	4	4	.0					4							
D	DO 3S	25	19	19	.2			11		8							
D	DO 3S	26	4	4	.0					4							
D	DO 3S	27	27	27	.3			3	4	16	4						
D	DO 3S	28	18	18	.2			13		5							
D	DO 3S	29	34	34	.4				20	14							
D	DO 3S	30	22	22	.3				9	14							
D	DO 3S	32	177	177	2.2			5	130	34		9					
D	DO 3S	33	6	6	.1					6							
D	DO 3S	34	6	6	.1						6						
D	DO 3Ș	35	26	26	.3			26									
D	DO 3S	36	20	20	.2					20							
D	DO 3S	37	109	109	1.4			27	35	48				1			
D	DO 3S	38	21	21	.3				5	16							
D	DO 3S	39	61	61	.8			14	29	18		l .					
D	DO 3S	40	230	1.1 227	2.8			64	43	120							
D	DO 3S	41	21	21	.3				21								
D	DO 4S	. 9	2	2	.0			2									
D	DO 4S	10	3	3	.0					3							
D	DO 4S	11	3	3	.0			2		1							
						l		1				l		1		1	

TC PLOGSTVB **Log Stock Table - MBF** 2 T06N R07W S23 TyTAKE 95.00 Page Project: **DEMO** T06N R07W S23 TyTAKE Date 10/4/2013 167.00 Acres 262.00 Time 10:56:14AM So Gr Log Gross Def % Net Volume by Scaling Diameter in Inches Net % Spp rt de Len **MBF MBF** Spc 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-19 20-23 24-29 30-39 40+ D DO 4S 13 .0 2 D DO 4S 15 14 14 .2 11 2 D DO 4S 16 3 .0 3 D DO 4S 17 9 .1 D DO 4S 18 7 5 2 D DO 4S 22 3 .0 3 D DO 4S 27 18 .2 10 8 D DO 4S 28 8 .1 D DO 4S 40 .1 5 D Totals 8,043 7,998 82.3 221 331 394 851 871 2556 1676 1019 79 DO CR A 10 58 58 10.1 15 19 24 A DO CR 11 .2 1 DO CR 14 3 .6 3 DO CR A 15 8 1.3 8 DO CR 16 A 8 1.3 8 A DO CR 18 3 .5 3 DO CR 20 Α 64 11.2 33 15 17 A DO CR 21 22 22 3.7 4 17 A DO CR 22 7 1.1 7 DO CR 24 Α .5 3 DO CR Α 26 .8 4 A DO CR 28 8 1.3 8 DO CR Α 29 5 .8 5 DO CR Α 30 34 34 5.8 22 12 DO CR A 31 3 3 .6 3 DO CR A 32 178 177 30.6 9 20 61 20 66 A DO CR 36 9 1.6 9 Α DO CR 37 10 10 1.7 10 DO CR A 150 150 26.0 39 25 38 26 22 A Totals 579 577 5.9 138 54 132 50 121 58 24 M DO CR 35 3 100.0 3 Totals M 3 .0 3 S DO 2S 32 8 58.7 S DO 3S 38 2 2 13.5 \mathbf{S} DO 4S 29 4 27.8 4

TC PLO	OGSTVB				Log	Stock Table	e - MB	F							
	R07W S23 R07W S23			.00	Proj Acre		MO 262	.00				Page Date Time	10	3 /4/2013 :56:14	
s	So Gr	Log	Gross	Def Net	%]	Net Volu	ıme by	Scaling Di	ameter in Inc	hes				
Spp T	rt de	Len	MBF	% MBF	Spc	2-3 4-5	6-7	8-9	10-11 12-1	3 14-15 16	5-19	20-23	24-29	30-39	40+
S	Total	s	14	14	.1	4		2			8				
Н	DO 2S	32	. 229	229	20.2					16	45	80	87		
Н	DO 2S	40	457	456	40.3				;	24 1	.29	201	102		
Н	DO 3S	16	6	6	.5				6						
Н	DO 3S	20	7	7	.6				7						
Н	DO 3S	22	31	31	2.7		3		8		20				
Н	DO 3S	29	8	8	.7			8							
Н	DO 3S	32	51	51	4.6			51							
Н	DO 3S	34	5	5	.4				5						
Н	DO 3S	40	145	145	12.8				64	80					
Н	DO 4S	16	5	5	.5		5								
Н	DO 4S	19	21	21	1.8	·	13	7							
Н	DO 4S	20	2	2	.2		2								
Н	DO 4S	22	11	11	.9				3		. 8				
Н	DO 4S	25	17	17	1.5		17								
Н	DO 4S	29	27	27	2.4		27								
Н	DO 4S	37	95	95	8.4		26		16		53				
Н	DO 4S	38	16	16	1.4			16							····
Н	Total	s	1,132	1,131	11.6		94	83	109 12	21 2	:55	281	189		
Total	All Spec	ies	9,771	9,723	100.0	7	453	470	634 102	992 28	377	1981	1208	79	

TC TLOGSTVB Log Stock Table - MBF Project: **JARVIEP** T06N R07W S23 TTAK T06N R07W S23 TTAKE Page 1 Twp Sample Trees Tract Type Acres Plots Rge Sec Date 9/26/2013 06N 07W23 AREA1 TAKE 95.00 53 110 Time 10:52:29AM Net Volume by Scaling Diameter in Inches S So Gr Log Gross % Net % Spp T rt de Len 10-11 12-13 14-15 16-19 30-39 40+ **MBF** Def **MBF** Spc 2-3 4-5 20-23 24-29 DO CU D DO CU DO CU D 6 D DO CU 8 DO CU 10 D DO CU 12 D 49 1.3 49 D DO 2S 20 49 D DO 2S 21 4 .1 4 DO 2S 4 4 D 22 .1 5 DO 2S 29 5 D .1 5 DO 2S 30 5 D .1 56 44 59 63 36 36 294 7.9 DO 2S 32 296 .5 D DO 2S 34 D 5 5 .1 32 D DO 2S 36 32 32 .8 DO 2S 37 .2 D 6 6 DO 2S 39 6 6 .2 D 3,004 80.2 59 300 851 800 951 43 DO 2S 40 3,029 .8 D 2 2 .0 D DO 3S 17 3 3 D DO 3S 19 3 .1 DO 3S 22 22 3 6 14 D 20 .6 12 12 DO 3S 12 .3 D 21 3 DO 3S 22 3 3 .1 D DO 3S 23 4 4 .1 D 8 DO 3S 25 11 3 D 11 .3 D DO 3S 26 .1 4 DO 3S 27 27 27 .7 3 16 D DO 3S 28 10 .3 5 5 D 10 DO 3S 18 .5 4 14 D 29 18 9 DO 3S 9 9 .2 D 30 5 27 D DO 3S 32 61 61 1.6 20 D DO 3S 33 6 6 .2 6 D DO 3S 34 6 6 .1 .2 6 D DO 3S 36 6 6 1.0 21 17 38 D DO 3S 37 38 5 D DO 3S 38 5 5 .1 15 41 D DO 3S 40 59 4.1 56 1.5 3 3 .1 D DO 4S 10 3 3 2 1 D DO 4S 11 3 .1 2 2 D DO 4S 13 2 .0 2 2 2 D DO 4S 15 .1 3 3 3 D DO 4S 16 .1 7 5 2 D DO 4S 18 7 .2 DO 4S 3 3 .1 3 D 22 3 DO 4S 27 3 3 .1 D 5 DO 4S 40 5 .1 5 D 99 170 924 911 1019 155 79 D Totals 3,774 3,745 84.0 32 356 DO CU 4 DO CU 6 A DO CU ·8 10.1 15 19 24 A DO CR 10 58

TC TLOGSTVB Log Stock Table - MBF Project: **JARVIEP** T06N R07W S23 TTAKE T06N R07W S23 TTAK Page 2 Twp Rge Sec Tract Type Plots Sample Trees Acres Date 9/26/2013 06N 07W23 AREA1 **TAKE** 95.00 53 110 Time 10:52:29AM S So Gr Log Gross % Net % Net Volume by Scaling Diameter in Inches Spp T rt de Len MBF MBF Def Spc 6-7 8-9 10-11 12-13 14-15 16-19 20-23 24-29 2-3 4-5 30-39 40+ DO CR 11 1 1 .2 DO CR 14 3 3 .6 3 DO CR 15 8 8 1.3 8 DO CR 16 8 1.3 8 DO CR 18 3 .5 3 DO CR 20 64 64 11.2 33 15 17 DO CR 21 22 22 3.7 4 17 DO CR 22 7 1.1 7 DO CR 24 3 3 .5 DO CR 26 4 .8 4 DO CR 28 8 1.3 8 DO CR 29 5 5 .8 Α DO CR 30 34 34 5.8 22 12 A DO CR 31 3 3 3 .6 A DO CR 32 178 1.0 177 30.6 9 20 61 20 66 DO CR 36 9 1.6 9 DO CR 37 10 A 10 1.7 10 DO CR 40 150 150 26.0 39 25 38 26 22 A Totals 579 577 12.9 54 132 138 50 58 121 24 DO CU 6 Η 16 Η DO 2S 32 16 12.9 16 DO 2S 40 Η 76 76 60.3 24 51 Η DO 3S 16 6 6 4.8 6 Η DO 3S 20 7 7 5.7 7 Η DO 3S 22 3 3 2.4 3 Н DO 3S 34 5 5 3.8 5 2 2 1.6 Н DO 4S 20 2 DO 4S 22 Η 11 11 8.4 3 Η Totals 126 126 2.8 5 21 41 51 DO CR 35 3 3 M 100.0 3 Totals 3 3 3 M .1 DO CU 10 8 81.4 DO 2S 32 8 DO 3S 38 2 2 18.6 2 Totals 10 10 .2 2 Total All Species 4,491 4,461 3 100.0 155 176 322 245 477 998 987 1019 79

TC TI	OGSTVB		•			g Stoo	ck Ta	ible JAR	MBF VIEP									
T06N Twp 06N	R07W S	Se	ec T	ract REA2		Type TAK	E	Acres		Plots 38		Sample	Tree	es	I	ON R0' Page Date Time	1 9/26/2	TTAK 2013 :29AM
				0./	•••		Ī		NT 4 X7			G . I'	D:					
Spp T	So Gr	1	Gross	%	Net	% .					\neg	Scaling		14-15			24-29	30-39 40+
			MBF	Def	MBF	Spc	2-3	4-5	6-7	8-9	+	10-11 1	2-13	14-15	10-19	20-23	24-29	30-39 40+
D D	DO CU																	
D	DO CL										İ							
D -	DO 2S		166		166	3.9					7		67	54	45			
D	DO 2S		3,458		3,441	80.9							629	461	1587			
_	DO 3S		7		7	.2					7							
D D	DO 3S		40		40	.9						40						
D	DO 3S		11		11	.3			5		6							
D _i	DO 3S	25	8		8	.2			. 8									
D	DO 3S		8		8	.2			8									
D	DO 3S		16		16	.4				1	6	1.4						
D	DO 3S		14		14	.3 2.7				10	ړ ا	14 14						
D D	DO 3S DO 3S		117 26		117 26	.6			26		۱ ٔ	14						
D	DO 3S		13		13	.3			20			13						
D	DO 3S		71		71	1.7			27	1	4	30						
D	DO 3S		16		16	.4						16						
D	DO 3S	39	61		61	1.4			14		- 1	18						
D	DO 3S		171		171	4.0			64		- 1	79						
D _	DO 3S	41	21		21	.5				2	1							
D -	DO 4S	9	2		2	.1			2									
D	DO 4S		11		11	.3			11									
D	DO 4S		9		9	.2			9		ا							
D .	DO 4S DO 4S		15 8		15 8	.3			7 8		8							
D D		z8 tals	4,269		4,252	80.8			189		2	224	696	515	1632	764	***************************************	
Н	DO CU		1,200								7							
-					212	21.1					-				4.5	80	87	
H	DO 2S DO 2S		212 382		212 381	21.1 37.8									45 129	l		
H 						<u> </u>	 				4							
H	DO 3S		28		28	2.7					8	8			20			
H	DO 3S DO 3S		8 51		8 51	.8 5.1					1							
H H	DO 38		51 145		145	14.4	ļ					64	80					
-					5	.5	 				-							
H H	DO 4S DO 4S		5 21		21	2.1			5 13		7							
Н	DO 48		17		17	1.7			17									
H	DO 4S		27		27	2.7			27									
Н	DO 4S		95		95	9.4			26			16			53			
Н	DO 4S	38	16		16	1.6	ļ			1	6							
Н	То	tals	1,007		1,006	19.1	ļ		89	8	3	89	80		247	230	189	
S	DO 4S	29	4		4	100.0	<u> </u>	4										
S	То	tals	4		4	.1	<u> </u>	4										
Total A	ll Species		5,280)	5,262	100.0		4	277	31	.5	313	776	515	1879	994	189	

 TC
 PSTNDSUM
 Stand Table Summary
 Page Date:
 1 9/17/2013

 T06N R07W S23 TyRW
 3.00
 Project JARVIEP
 Time:
 10:40:15AM

S		6 1		Tot	Trees/	BA/	Logs	Averag Net	ge Log Net	Tons/	Net Cu.Ft.	Net Dd Et	To	tals	
Spc T	DBH	Sample Trees		Av Ht	Acre	Acre		Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons C	Cunits	MBF
D	13	2	89	78	.985	.91	1.97	15.0	55.0		30	108		78	
D	14	1	89	122	1.989	2.13	3.98	25.0	105.0		99	418		264	
D	15	1	83	87	1.733	2.13	1.73	21.0	70.0		36	121		96	
D	19	2	87	115	2.160	4.25	6.48	29.2	110.0		189	713		501	
D	20	1	85	87	.975	2.13	1.95	37.5	115.0		73	224		194	
D ·	21	9	87	115	5.176	12.45	14.27	37.9	151.6		540	2,163		1,432	
D	22	3	88	143	1.150	3.03	3.45	48.0	206.4		166	712		439	
D	23	10		140	2.733	7.89	8.20	50.4	206.3		413	1,692		1,095 904	
D	24	6		151	1.932	6.07	7.15	47.7	210.8		.341	1,507		2,084	
D	25	9	86	140	4.633	15.79	13.63	57.7	245.6		786 542	3,348 2,400		1,435	
D	26	11	86		2.716	10.01	8.72 3.40	62.1 69.9	275.2 312.5		238	1,064		631	
D -	28	7	86		1.134	4.85 10.01	6.55	85.1	413.6		557	2,709		1,477	
D	29 30	11 4	88 88	146 147	2.183 1.051	5.16	3.15	92.3	442.6		291	1,396		772	
D	31	14	87		1.851	9.70	5.55	90.4	435.2		502	2,417	•	1,330	
D	32	10	82		.813	4.54	2.44	89.9	399.3		219	974		581	
D	33	25	88		2.193	13.02	6.73	100.7	495.4		678	3,335		1,796	
.D D	34	6	85		.432	2.72	1.44	103.1	508.0		148	732		394	
D D	35	14		146	.951	6.36	3.13	107.6	541.3		336	1,692		891	448
D.	36	12		145	.771	5.45	2.44	121.6	637.4		297	1,556		786	412
D	37	2		149	.122	.91	.36	139.7	746.7		51	272		135	72
D	38	2		140	.115	.91	.35	138.7	733.3		48	254		127	67
D	40	2	89		.104	.91	.31	165.0	860.0		52	268		137	71
D	41	2	89	146	.099	.91	.30	149.3	813.3		44	242		118	64
D	42	2	89	159	.094	.91	.38	144.7	822.5		55	311		145	82
D	Totals	168	87	131	38.097	133.15	108.07	62.3	283.4		6,732	30,626		17,839	
Н	12	2	84	33	5.068	3.98	5.07	12.5	30.0		63	152		168	
Н	13	1	89	85	2.159	1.99	4.32	16.5	60.0		71	259		189	
Н	15	1	85	109	1.622	1.99	3.24	27.5	105.0		89	341		236	
Н	18	4	85	97	.790	1.40	2.37	25.3	96.7		60	229		159	
Н	23	2	87	97	1.379	3.98	3.45	50.4	194.0		174	669		461 305	
Н	26	1	89	135	.540	1.99	1.62	71.0	346.7		115	561 520		300	
Н	29	1	86		.434	1.99	1.30	87.0	406.7		113 162	529 819		429	
H H	32 33	5 1	88 88	122 158	.606 .335	3.39 1.99	1.69 1.34	95.6 97.3	483.7 540.0		130	724		345	
Н	Totals	18	86	77	12.932	22.69	24.40	40.1	175.5		978	4,283		2,592	
												29		27	
A	10	2	86		1.462	.80	1.46	7.0 15.5	20.0 55.0		10 27	29 95		71	
A	13	2	85	73 50	.865	.80 2.39	1.73 2.98	18.5	50.0		55	149		146	
A	14	6	86 86	50 60	2.238 3.249	3.99	5.20	20.0	63.7		104	331		276	
A	15	10	86 86		2.284	3.19	4.00	21.6	78.6		86	314		229	
A	16 17	8 4	87	63 53	1.012	1.59	1.01	36.0	75.0		36	76		97	
A ^	18	2	86		.451	.80	.45	36.0	60.0		16	27		43	
A A	19	2	86	70	.405	.80	.81	33.0	110.0		27	89		71	
A A	20	6	86		1.097	2.39	1.83	27.6	76.0		50	139		134	
A	21	10	86		1.658	3.99	2.65	45.0	142.5		119	378		316	
A	22	2	87	52	.302	.80	.30	48.0	70.0		14	21		38	
A	23	4	86		.553	1.59	.83	58.0	170.0		48	141		127	
A	24	2	86		.254	.80	.51	27.0	115.0		14	58		36	
A	25	4	86		.468	1.59	.94	39.3	137.5		37	129		97	
A	26	6	86		.649	2.39	1.51	46.9	177.1		71	268		188	71

тс	PSTNDS	UM				Stand Table Summary							Page Date:	2 9/17/2013		
T06N R07W S23 TyRW 3.00 T06N R07W S23 TyTAKE 95.00 T06N R07W S23 TyTAKE 167.00						Project JARVIEP Acres 265.00							Time: Grown Yea		10:40:15AM	
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre		Logs Acre	Averag Net Cu.Ft.	Net	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF	
A	Totals	70	86	55	16.946	27.91	26.21	27.3	85.7		716	2,245		1,896	595	
S S	13 28	1 2	79 86	33 99	.720 .065	.66 .28	.72 .13	15.0 68.5	20.0 295.0		11 9	14 39	and the same of th	29 24	4 10	
S	Totals	3	80	38	.785	.94	.85	23.2	62.2		20	53		52	14	
M	18	2	87	40	.316	.56	.32	29.0	40.0		9	13		24	3	
M	Totals	2	87	40	.316	.56	.32	29.0	40.0		9	13		24	3	
SN SN SN SN SN SN SN SN SN	11 12 16 20 22 25 26 28 30 45	1 1 1 1 1 1 1 2	88 89 88 88 85 85 89 86 83	68 35 17 30 20 17 30 25 19 30	.013 .011 .006 .004 .003 .003 .002 .002 .003	.01 .01 .01 .01 .01 .01 .01 .02							ı	·		
SN	Totals	11	87	37	.048	.09										
Totals		272	86	101	69.124	185.35	159.85	52.9	232.8		8,454	37,220		22,404	9,863	

TC TSTNDSUM **DEMO** Project T06N R07W S23 TLEA T06N R07W S23 TLEAV Page: 1 Rge Sec Tract Type Acres **Plots** Sample Trees Twp 10/04/20: Date: **LEAV** 167.00 07W23 AREA2 06N Time: 10:34:50AM $\mathbf{A}\mathbf{v}$ Average Log Net Net Totals Trees/ BA/ Net Net Tons/ Cu.Ft. Bd.Ft. S Sample FF Ht Logs Acre Acre Tons **Cunits MBF** Cu.Ft. Bd.Ft. Acre T **DBH Trees** 16' Tot Acre Acre Acre Spc 140.0 148 599 248 100 3.11 4.28 34.7 92 116 1.426 DL 20 1 560 244 335 1,461 266.7 DL 25 2 87 140 1.826 6.22 5.48 61.2 857 405 513 2,423 287.0 60.8 DL 26 3 89 144 2.532 9.34 8.44 905 422 542 2,528 2.348 9.34 8.61 62.9 293.6 DL 27 3 86 158 1,190 583 713 2.911 12.45 10.19 69.9 342.9 3,493 28 89 152 DL 4 1,194 584 87.8 429.2 715 3,494 29 151 2.714 12.45 8.14 4 89 DL 1,035 1,728 862 90.7 452.2 5,161 147 3.804 18.67 11.41 30 90 DL 6 82.5 436.0 734 3,883 1,227 648 157 2.375 12.45 8.91 DL31 4 88 301 362 1,800 604 3.90 92.7 461.4 32 2 87 156 1.114 6.22 DL 1,247 662 747 3,966 159 2.096 12.45 7.86 95.0 504.7 DL 33 4 89 133 280 .494 3.11 1.48 113.3 536.7 168 795 34 1 82 153 DL 891 457 157 1.397 9.34 5.12 104.1 533.6 533 2,734 35 DL 3 86 .440 178 903 298 151 166 3.11 1.32 135.0 683.3 82 DL36 1 306 171 820.0 183 1,025 158 .417 3.11 1.25 146.3 DL 37 1 88 271 335 560 141.3 1,624 38 2 83 153 .790 6.22 2.37 685.0 DL 592 309 354 1,851 DL 40 2 86 159 .713 6.22 2.14 165.7 865.0 175 310 .270 3.11 .81 229.7 1296.7 186 1,049 DL 46 1 92 153 309 176 270.3 1540.0 185 1,054 92 .228 3.11 .68 DL 50 1 153 181 302 178 .42 432.7 2553.3 1,067 .139 3.11 DL 64 1 92 153 13,606 6,832 8,147 40,911 87.8 440.8 DL Totals 46 88 150 28.036 143.16 92.82 108 155 181 26 3.872 6.84 3.87 28.0 40.0 1 88 34 HL18 556 238 333 1,425 2.007 6.02 55.3 236.7 25 1 89 110 6.84 HL737 264 442 1,580 5.879 13.68 9.89 44.6 159.7 Totals 2 88 60 HL75 44 13 26 3.74 7.0 20.0 9 1 88 31 3.744 1.65 AL35 10 21 61 3.033 1.65 3.03 7.0 20.0 10 1 88 25 AL109 33 40.0 65 201 88 48 5.013 3.31 5.01 13.0 2 AL11 40 105 67 18 19.0 50.0 2.106 1.65 2.11 85 56 AL12 1 30.0 22 54 36 9 12.0 1.795 1.65 1.79 ΑL 13 1 89 22 49 10 29 62 19.0 40.0 14 1 88 40 1.547 1.65 1.55 AL340 93 557 204 17.238 11.58 17.24 11.8 32.3 ΑL Totals 7 88 38 29 4 15.0 17 23 1 33 1.14 20.0 SL 13 79 1.142 1.05 29 1.142 1.05 15.0 20.0 17 23 4 Totals 33 1.14 SL1 79 SN 11 3 88 15 4.785 3.16 91 30 1.340 1.05 SN 12 1 3 87 28 3.426 3.16 13 SN .985 89 60 1.05 SN 14 1 SN 17 1 89 35 .668 1.05 19 91 62 .535 1.05 SN 1 SN 22 1 85 91 .399 1.05 24 1 88 40 .335 1.05 SN 46 1 88 17 .091 1.05 SN .077 SN 50 1 89 18 1.05 14 88 30 12.641 14.74 SN Totals 72.8 8809 43,070 14,712 7,193 70 64.936 184.21 121.09 355.7 Totals 88 87

Stand Table Summary

