

District: West Oregon

Timber Sale Appraisal Leaning Towers of Baber Sale 341-14-07

Date: August 12, 2013

cost summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$736,106.25	\$0.00	\$736,106.25
	· · · · · · · · · · · · · · · · · · ·	Project Work:	\$(36,449.00)
•		Advertised Value:	\$699,657.25

1

District: West Oregon

Timber Sale Appraisal Leaning Towers of Baber Sale 341-14-07

Date: August 12, 2013

timber description

Location: Portions of Section 9, T11S, R9W, W.M., Lincoln County, Oregon.

Stand Stocking: 20%

SpecieName	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	27	0	100

Volume by Grade	2S	3S	4S	Total
Douglas - Fir	1,904	427	34	2,365
Total	1,904	427	34	2,365

District: West Oregon

Timber Sale Appraisal Leaning Towers of Baber Sale 341-14-07

Date: August 12, 2013

comments: Pond Values Used: 2nd Quarter Calender Year 2013.

Western Hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$200/MBF = \$480/MBF - \$280/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost (NOTE: Cedar must be scaled) \$670/MBF = \$950/MBF - \$280/MBF

Red Alder and Other Hardwoods Stumpage Price = Pond Value minus Logging Cost: \$170/MBF = \$450/MBF - \$280/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$4.00/Gallon

LOG HAUL: Conifer costed to Philomath. Hardwood costed to Eugene.

HAULING COST ALLOWANCE Hauling costs equivalent to \$780 daily truck cost.

Other Costs (with Profit & Risk to be added): None.

Other Costs (No Profit & Risk added): Equipment Cleaning (Invasive Species Prevention) = \$2,000 Snag Creation: 41 snags @ \$75 ea = \$3,075 Down Wood: 41 trees~2 fallers x \$430/day = \$860 Firewood Sorting: 2 landings x \$100 landing = \$200 TOTAL Other Costs (No Profit & Risk added) = \$6,135

SLASH DISPOSAL Move-in: \$500 Project Work: 54 hrs @ \$125/hr = \$7,250 TOTAL Slash Disposal = \$8,000

3 -

District: West Oregon

Timber Sale Appraisal Leaning Towers of Baber Sale 341-14-07

Date: August 12, 2013

logging conditions

40.00% combination#: 1 Douglas - Fir yarding distance: Long (1,500 ft) downhill yarding: No Cable: Large Tower >=70 logging system: Process: Manual Falling/Delimbing tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF loads / day: 8.0 bd. ft / load: 4,000 \$115.42 cost / mbf: machines: Log Loader (A) Tower Yarder (Large) Douglas - Fir 60.00% combination#: 2 yarding distance: Short (400 ft) downhill yarding: No Process: Manual Falling/Delimbing Shovel logging system: tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF 4,000 loads / day: 5.0 bd. ft / load: \$125.23 cost / mbf:

machines:

Shovel Logger

District: West Oregon

Timber Sale Appraisal Leaning Towers of Baber Sale 341-14-07

Date: August 12, 2013

logging costs

Operating Seasons:	2.00	Profit Risk:	10.00%
Project Costs:	\$36,449.00	Other Costs (P/R):	\$0.00
Slash Disposal:	\$7,250.00	Other Costs:	\$6,135.00

Miles of Road

			Road Maintenance:	\$2.19
Dirt	Rock (Contractor)	Rock (State)	Paved	
0.0	0.0	0.0	0.0	

Hauling Costs

Species		\$/WBF	Trips/Day	WIBF / Load
Douglas - Fir		\$0.00	2.0	3.0
	111 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			

Timber Sale Appraisal Leaning Towers of Baber Sale 341-14-07

"STEWARDSHIP IN FORESTRY"

District: West Oregon

Date: August 12, 2013

logging costs breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling	Other	Total
Douglas -	Fir								
\$121.31	\$2.19	\$3.71	\$118.18	\$0.00	\$24.54	\$3.07	\$5.00	\$2.59	\$280.59

Douglas - Fir	\$0.00	\$591.84	\$311.25	\$0.00

Timber Sale Appraisal Leaning Towers of Baber Sale 341-14-07

"STEWARDSHIP IN FORESTRY"

District: West Oregon

Date: August 12, 2013

summary

· · · · · · · · · · · · · · · · · · ·		
MBF	Value	Total
0	\$0.00	\$0.00
	0	MBF Value 0 \$0.00

MBF	Value	Total
2,365	\$311.25	\$736,106.25
	MBF 2,365	MBF Value

Gro	oss Timber Sale Value		:	-
Rec	:overy: \$736,106.25	5		
Prepared by: Jim Doyal		Phone:	541-929-3266	

SUMMARY OF ALL PROJECT COSTS

Sale Name:	Leaning Towers of	Baber		Date: Time:	June 2013 12:14	
Project #1 - New C	<u>Construction</u>					
Road Segment		Length		<u>Cost</u>		
C to C1		9.6 sta		\$12,759		
					_	
	TOTALS	9.6 sta				\$12,759
Project #2 - Impro	vements					
Road Segment	Venients	Length		Cost		
A to A1		192.2 sta		\$11,456		
B to B1		18.5 sta		\$10,939		
		10.5 314		ψ10,000		
	TOTALS	210.7 sta			_	\$22,395
<u>Move in</u>			<u>Cost</u>	On-site move	9	
					_	
Crawler tractor, D-7	7 or equiv.		\$488	3		
Grader, Cat 14-G o	or equiv.		\$304	1		
Water Truck			\$199)		
Vibratory roller			\$304	\$0		
	TOTAL				_	\$1,295
						ψ1,200

GRAND TOTAL

\$36,449

Date 06/14/2013

SUMMARY OF CONSTRUCTION COST

SALE ROAD	Leaning T A to A1	owers of Baber	- Project #2		LENGTH	improve		192.2 sta
IMPROVE Shape sur (with road	face	192.2 sta.	@	\$13.75	/sta	=	\$2,643	
					TOTAL IM	PROVEME	NT	\$2,643
SURFACI Spot rock (100 cy/m		360	cy of	Size 3-0"	Cost/yd \$24.48	=	\$8,813	
(100 Cy/III	1)				TOTAL RO	OCK COST	=	\$8,813
Compiled	by:	J. Doyal						

e e inplie a b y i	e . b e j a.		
Date:	Jun 14, 2013	GRAND TOTAL ====>	\$11,456

SUMMARY OF CONSTRUCTION COST

SALE ROAD	Leaning T B to B1	Fowers of Baber	- Project #2		LENGTH	improve		18.5 sta
IMPROVE Shape su (with roac	rface	18.5 sta.	@	\$9.90	/sta	=	\$183	
					TOTAL IN	IPROVEM	ENT	\$183
SURFAC Surface re		414	cy of	Size 3-0"	Cost/yd \$25.98	=	\$10,756	
					TOTAL RO	OCK COS	Γ=	\$10,756
Compiled Date:	by:	J. Doyal Jun 14, 2013			GRAND T	OTAL ===	:==>	\$10,939

SUMMARY OF CONSTRUCTION COST

SALE ROAD	ROAD C to C1		- Project #1		LENGTH	improve		9.6 sta
CLEARIN	IG AND GR	UBBING						
0.5	3 acres	@	\$1,313.31	/acre		=	\$696 r	oad
0.2	0 acres	@	\$1,010.24			=		andings
								C C
				TOTAL C	LEARING	AND GRUB	BING =	\$898
EXCAVA	TION	With D7 dozer of	or equivalent	t				
Construct	-	9.6 sta.	@	\$74.28	/sta.	=	\$713	
Construct		2 hr.	@	\$135.80		=	\$272	(2 landings)
Shape su	-	9.6 sta.	@	\$11.55		=	\$111	(
(with road	-			·				
	subgrade	9.6 sta.	@	\$8.31	/sta	=	\$80	
(with vibra	atory roller)							
					TOTAL EX	XCAVATIO	N =	\$1,176
								Ŧ) -
SURFAC	ING			Size	Cost/yd			
Base rock	<	423	cy of	Pit Run	\$23.28	=	\$9,847	
Landing r	ock	36	cy of	Pit Run	\$23.28	=	\$838	
					TOTAL R	OCK COST	=	\$10,685
Compiled	bv:	J. Doval						

Compiled by:	J. Doyal		
Date:	Jun 14, 2013	GRAND TOTAL ====>	\$12,759

SALE NAME: DATE: Jun 14, 2013 ROAD NAME: CLASS: Medium 18 CY truck ROCK SOURCE: Route: TIME Computation: Road speed time factors: 1. 55 MPH MRT 0.0 minutes 2. 50 MPH 0.0 minutes MRT 45 MPH 3. 0.0 minutes MRT 40 MPH 0.0 minutes 4. MRT 35 MPH 0.0 minutes 5. MRT 6. 30 MPH 60.8 MRT 121.6 minutes 25 MPH 0.0 minutes 7. MRT 8. 0.0 minutes 20 MPH MRT -15 MPH 9. MRT 0.0 minutes 10. 10 MPH 11. 05 MPH 10 MPH 0.0 minutes MRT 0.0 minutes MRT 0.50 minutes Dump or spread time per RT Total hauling cycle time for this setting (100% efficiency) 122.10 minutes Operator efficiency correction 0.85 143.65 minutes Job efficiency correction 0.90 159.61 minutes Truck capacity (CY) 8.87 min/CY 18.00 0.25 min/CY Loading time, delay time per CY TIME (minutes) per cubic yard 9.12 min/CY COST per CY computation \$90.22 /hr. Cost of truck and operator per hour \$1.50 /min Cost of truck and operator per minute Cost per CY \$13.68 /CY Spread and compact Water truck, Grader & Roller \$1.50 /CY Cost Delivered Cost Delivered Cost/Yd (Pit) w/o processing with processing Size 1½ - 0" \$11.14 \$24.82 \$26.32 3 - 0" \$10.80 \$24.48 \$25.98 Jaw Run \$9.11 \$22.79 \$24.29

\$21.78

\$23.28

Note: Pit costs April 2010 Wild Rose Quarry

\$8.10

Pit Run

Leaning Towers of Baber (341-14-07) FY 2013

TIMBER CRUISE REPORT

- 1. Sale Area Location: Portions of Section 9, T11S, R9W, W.M., Lincoln County, Oregon
- 2. Fund Distribution:
 - a. Fund BOF 100%; CSL 0%
 - b. Tax Code
- 3. Sale Acreage by Area:

Area	Treatment	Gross Acres	Acreage Adjustment	Net Acres	Acreage Comp. Method	Closure
I	Modified Clearcut	46	Gross Acre	41	Ortho photo, GIS, GPS	n/a

- 4. Cruisers and Cruise Dates: The sale area was cruised by Jim Doyal in the spring of 2013.
- 5. Cruise Method and Computation: The sale area is a modified clearcut and was cruised using variable plots. The cruise used a 40 BAF with plots on a 300' by 300' grid. Every third plot was measured and graded. A total of 21 plots were sampled, with 14 measured and graded plots. All species on measure plots were graded and defect was assessed. This was a gross acre cruise.

Data was recorded on cruise cards in field notebooks and manually entered into Atterbury Super A.C.E. -Version 2.40. Stereo photos, digital ortho photos, LiDar data, and GPS data from a Garmin GPSMap 60CSx was used to map the boundaries for the sale and ArcMap 10.1 was used to determine gross acreage.

- 6. Timber Description: The sale is a naturally seeded 89 year-old stand of Douglas-fir. The Douglas-fir averages 27 inches DBH.
- 7. Statistical analysis and stand summary: (See attached "Statistics" and "Stand Table Summary")

Area	Target CV	Target SE%	Actual CV	Actual SE%
Ι	60%	11%	10.6	2.4

NOTE: Statistics shown are for Douglas-fir and red alder take and leave trees combined. Percentages are for Net BF volume, see attached "Project Statistics" and "Type Statistics" for other values.

8. Total Volume (MBF) by Species and Log Size: (See attached "Stand Table Summary" and "Log Stock Table).

Species	DBH	Net Vol. ¹	2-Saw	3-Saw	4-Saw	Camprun	% D & B
Douglas-fir	27"	2365	1904	427	34		3

¹ Net volumes are after defect and breakage have been deducted.

TC PSTATS				DJECT S Oject	STATIN LTB				PAGE DATE	1 6/26/2013
WP RGE	SC TRACT		ГҮРЕ			RES	PLOTS	TREES	CuFt	BdFt
11S 09	09 LTB	(001			46.00	21	146	1	W
				TREES	F	ESTIMATED TOTAL		ERCENT SAMPLE	<u> </u>	
	PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL	21	146		7.0						
CRUISE	14	67		4.8		2,985		2.2		
DBH COUNT										
REFOREST	_	10		6.0						
COUNT	7	48		6.9						
BLANKS 100 %										
			STA	ND SUMM	/IARY					
	SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
	TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF-T	67	64.9	26.8	91	52	253.3	59,978	59,473	12,817	
TOTAL	67	64.9	26.8	91		253.3	59,978	59,473	12,817	12,817
	3.1 TIMES OU	T OF 100 TI	HE VOLUI						REO	INF. POP.
68 CL 68.1 SD: 1.0	3.1 TIMES OU COEFF VAR.%	S.E.%		SAMPLI	BE WITH E TREES AVG	- BF HIGH		OF TREES	REQ. 10	INF. POP. 15
CL 68.1 SD: 1.0 DF-T	COEFF VAR.% 73.9	S.E.% 9.0	L	SAMPLI OW 1,596	E TREES AVG 1,754	5 - BF HIGH 1,912		OF TREES	10	
CL 68.1 SD: 1.0 DF-T TOTAL	COEFF VAR.% 73.9 73.9	S.E.%	L	SAMPLI OW 1,596 1,596	E TREES AVG 1,754 1,754	5 - BF 111GH 1,912 1,912	#	OF TREES 5 218	10 54	15 24
CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1	COEFF VAR.% 73.9 73.9 COEFF	S.E.% 9.0 9.0		SAMPLI OW 1,596 1,596 SAMPLI	E TREES AVG 1,754 1,754 E TREES	5 - BF HIGH 1,912 <i>1,912</i> 5 - CF	#	OF TREES 5 218 OF TREES	10 54 REQ.	15 24 INF, POP.
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1.0	COEFF VAR.% 73.9 73.9 COEFF VAR.%	S.E.% 9.0 9.0 S.E.%		SAMPLI OW 1,596 1,596 SAMPLI OW	E TREES <u>AVG</u> 1,754 1,754 E TREES <u>AVG</u>	5 - BF 111GH 1,912 <i>1,912</i>	#	OF TREES 5 218	10 54	15 24
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T	COEFF VAR.% 73.9 73.9 COEFF	S.E.% 9.0 9.0		SAMPLI OW 1,596 1,596 SAMPLI	E TREES AVG 1,754 1,754 E TREES	5 - BF 11IGH 1,912 <i>1,912</i> 5 - CF HIGH	#	OF TREES 5 218 OF TREES	10 54 REQ.	15 24 INF, POP.
CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6	<u>S.E.%</u> 9.0 9.0 <u>S.E.%</u> 7.9		SAMPLI OW 1,596 7,596 SAMPLJ OW 334	E TREES <u>AVG</u> 1,754 1,754 E TREES <u>AVG</u> 363 363	5 - BF HIGH 1,912 <i>1,912</i> 5 - CF HIGH 392	#	OF TREES 5 218 OF TREES 5	10 54 REQ. 10 42	15 24 INF, POP. 15
CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6	<u>S.E.%</u> 9.0 9.0 <u>S.E.%</u> 7.9	L. J	SAMPLI OW 1,596 3,596 SAMPLI OW 334 334 334 TREES//	E TREES <u>AVG</u> 1,754 1,754 E TREES <u>AVG</u> 363 363	5 - BF HIGH 1,912 <i>1,912</i> 5 - CF HIGH 392	#	OF TREES 5 218 OF TREES 5 167	10 54 REQ. 10 42	15 24 INF, POP. 15 19
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 COEFF VAR.% 52.0	<u>S.E.%</u> 9.0 9.0 <u>S.E.%</u> 7.9 7.9 S.E.% 11.6	L. J	SAMPLI OW 1,596 3,596 SAMPLJ OW 334 334 TREES/A OW 57	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65	5 - BF HIGH 1,912 1,912 5 - CF HIGH 392 392 HIGH 72	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5	10 54 REO. 10 42 REO. 10	15 24 INF. POP. 15
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 COEFF VAR.%	S.E.% 9.0 9.0 S.E.% 7.9 7.9 S.E.%	L. J	SAMPLI OW 1,596 3,596 SAMPLJ OW 334 334 TREES/A OW 57	E TREES AVG 1,754 <i>1,754</i> E TREES AVG 363 363 ACRE AVG	5 - BF HIGH 1,912 <i>1,912</i> 5 - CF HIGH 392 392 HIGH	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS	10 54 REQ. 10 42 REQ.	15 24 INF, POP. 15
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 COEFF VAR.% 52.0	<u>S.E.%</u> 9.0 9.0 <u>S.E.%</u> 7.9 7.9 S.E.% 11.6	L. J	SAMPLI OW 1,596 3,596 SAMPLJ OW 334 334 TREES/A OW 57	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65 65	5 - BF HIGH 1,912 1,912 3 - CF HIGH 392 392 HIGH 72 72	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5	10 54 REQ. 10 42 REQ. 10 28	15 24 INF. POP. 15
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 COEFF VAR.% 52.0 52.0	<u>S.E.%</u> 9.0 9.0 <u>S.E.%</u> 7.9 7.9 S.E.% 11.6		SAMPLI OW 1,596 3,596 SAMPLJ OW 334 334 TREES/4 OW 57 57 57 BASAL 4	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65 65 AREA/AG	5 - BF HIGH 1,912 <i>1,912</i> 5 - CF HIGH 392 392 HIGH 72 72 CRE HIGH	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5 113	10 54 REQ. 10 42 REQ. 10 28	15 24 INF. POP. 15
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 COEFF VAR.% 52.0 52.0 COEFF VAR.% 16.8	S.E.% 9.0 9.0 S.E.% 7.9 7.9 S.E.% 11.6 11.6 11.6 3.8		SAMPLI OW 1,596 7,596 SAMPLJ OW 334 334 334 TREES/A OW 57 57 57 BASAL A OW 244	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65 65 AREA/AC AVG 253	5 - BF HIGH 1,912 <i>1,912</i> 5 - CF HIGH 392 392 HIGH 72 72 CRE HIGH 263	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5 113 OF PLOTS 5	10 54 REQ. 10 42 REQ. 10 28 REQ. 10	15 24 INF. POP. 15 19 INF. POP. 15 13 INF. POP. 15
CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T CL 68.1 SD: 1.0 DF-T	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 COEFF VAR.% 52.0 52.0 COEFF VAR.%	S.E.% 9.0 9.0 S.E.% 7.9 7.9 S.E.% 11.6 11.6 S.E.%		SAMPLI OW 1,596 7,596 SAMPLJ OW 334 334 334 TREES/A OW 57 57 BASAL A OW	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65 65 AREA/AC AVG	5 - BF HIGH 1,912 <i>1,912</i> 5 - CF HIGH 392 392 HIGH 72 72 CRE HIGH	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5 113 OF PLOTS	10 54 REO. 10 42 REO. 10 28 REQ.	15 24 INF. POP. 15
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 64.6 COEFF VAR.% 52.0 52.0 52.0 COEFF VAR.% 16.8 16.8 16.8	S.E.% 9.0 9.0 S.E.% 7.9 7.9 S.E.% 11.6 11.6 11.6 S.E.% 3.8 3.8 3.8		SAMPLI OW 1,596 7,596 SAMPLJ OW 334 334 334 TREES/4 OW 57 57 BASAL 4 OW 244 244 244 NET BF/	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65 65 AREA/AC AVG 253 253 253 /ACRE	5 - BF HIGH 1,912 1,912 - CF HIGH 392 392 HIGH 72 72 CRE HIGH 263 263	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5 113 OF PLOTS 5 12 OF PLOTS	10 54 REQ. 10 42 REQ. 10 28 REQ. 10 3 REQ.	15 24 INF. POP. 15 19 INF. POP. 15 13 INF. POP. 15 1 INF. POP.
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 COEFF VAR.% 52.0 52.0 COEFF VAR.% 16.8 16.8 16.8 COEFF VAR.%	S.E.% 9.0 9.0 S.E.% 7.9 7.9 S.E.% 11.6 11.6 11.6 3.8 3.8 3.8 3.8 S.E.%		SAMPLI OW 1,596 7,596 SAMPLJ OW 334 334 334 TREES// OW 57 57 57 BASAL 4 OW 244 244 244 244 NET BF/ OW	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65 65 AREA/AC AVG 253 253 /ACRE AVG	5 - BF HIGH 1,912 <i>1,912</i> - CF HIGH 72 72 С RE HIGH 263 263 HIGH	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5 113 OF PLOTS 5 12	10 54 REO. 10 42 REO. 10 28 REO. 10 28 3	15 24 INF. POP. 15 19 INF. POP. 15 13 INF. POP. 15
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1,0 DF-T TOTAL	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 COEFF VAR.% 16.8 16.8 16.8 16.8 16.8 16.8 10.6	S.E.% 9.0 9.0 S.E.% 7.9 7.9 S.E.% 11.6 11.6 11.6 3.8 3.8 3.8 3.8 3.8 2.4		SAMPLI OW 1,596 7,596 SAMPLJ OW 334 334 334 334 57 57 57 BASAL 4 OW 244 244 244 244 NET BF/ OW 8,061 5	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65 65 AREA/AC AVG 253 253 /ACRE AVG 59,473	5 - BF HIGH 1,912 1,912 5 - CF HIGH 392 392 HIGH 72 72 CRE HIGH 263 263 HIGH 60,885	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5 113 OF PLOTS 5 12 OF PLOTS 5	10 54 REQ. 10 42 REO. 10 28 REQ. 10 3 REO. 10	15 24 INF. POP. 15 19 INF. POP. 15 13 INF. POP. 15 15 15
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 SD: 1	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 COEFF VAR.% 52.0 52.0 COEFF VAR.% 16.8 16.8 16.8 COEFF VAR.%	S.E.% 9.0 9.0 S.E.% 7.9 7.9 S.E.% 11.6 11.6 11.6 3.8 3.8 3.8 3.8 S.E.%		SAMPLI OW 1,596 7,596 SAMPLI OW 334 334 334 334 TREES/A OW 57 57 BASAL A OW 244 244 244 NET BF/ OW 8,061 5	E TREES AVG 1,754 1,754 E TREES AVG 363 363 363 ACRE AVG 65 65 AREA/AC AVG 253 253 /ACRE AVG 59,473 9,473	5 - BF HIGH 1,912 1,912 3912 - CF HIGH 392 392 HIGH 72 72 CRE HIGH 263 263 HIGH 60,885 60,885	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5 113 OF PLOTS 5 12 OF PLOTS 5 5	10 54 REQ. 10 42 REQ. 10 28 REQ. 10 3 REO. 10 10	15 24 INF. POP. 15 19 INF. POP. 15 13 INF. POP. 15 1 INF. POP. 15
CL 68.1 SD: 1.0 DF-T 1.0 TOTAL 68.1 SD: 1.0 DF-T 1.0	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 64.6 COEFF VAR.% 16.8 16.8 16.8 16.8 16.8 16.8 10.6 10.6 10.6 COEFF	S.E.% 9.0 9.0 9.0 S.E.% 7.9 S.E.% 11.6 11.6 11.6 3.8 3.8 3.8 S.E.% 2.4 2.4 2.4		SAMPLI OW 1,596 7,596 SAMPLJ OW 334 334 334 334 TREES// OW 57 57 BASAL 4 OW 244 244 244 244 NET BF/ OW 8,061 5 3,061 5 S	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65 65 AREA/AC AVG 253 253 /ACRE AVG 59,473 9,473 FT FT/AC	5 - BF HIGH 1,912 1,912 1,912 5 - CF HIGH 392 392 392 HIGH 72 72 CRE HIGH 263 263 HIGH 60,885 60,885 CRE	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5 113 OF PLOTS 5 12 OF PLOTS 5 5	10 54 REQ. 10 42 REQ. 10 28 REQ. 10 3 REQ. 10 1 REQ.	15 24 INF. POP. 15 19 INF. POP. 15 1 INF. POP. 15 1 INF. POP. 15
CL 68.1 SD: 1,0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0 DF-T TOTAL CL 68.1 SD: 1.0	COEFF VAR.% 73.9 73.9 COEFF VAR.% 64.6 64.6 64.6 64.6 52.0 52.0 52.0 COEFF VAR.% 16.8 16.8 16.8 16.8 16.8 10.6 10.6	S.E.% 9.0 9.0 S.E.% 7.9 7.9 S.E.% 11.6 11.6 11.6 3.8 3.8 3.8 3.8 3.8 2.4		SAMPLI OW 1,596 7,596 SAMPLJ OW 334 334 334 TREES// OW 57 57 57 BASAL 4 OW 244 244 244 244 NET BF/ OW 8,061 5 3,061 5 5,061 5 5,061 5	E TREES AVG 1,754 1,754 E TREES AVG 363 363 ACRE AVG 65 65 AREA/AC AVG 253 253 /ACRE AVG 59,473 9,473 FT FT/AC	5 - BF HIGH 1,912 1,912 3912 - CF HIGH 392 392 HIGH 72 72 CRE HIGH 263 263 HIGH 60,885 60,885	#	OF TREES 5 218 OF TREES 5 167 OF PLOTS 5 113 OF PLOTS 5 12 OF PLOTS 5 5	10 54 REQ. 10 42 REQ. 10 28 REQ. 10 3 REO. 10 10	15 24 INF. POP. 15 19 INF. POP. 15 13 INF. POP. 15 1 INF. POP. 15

TI	1S R09W S09	1	Project: LTB Acres 46.00							I	Page 1 Date 6/26/2013 Time 7:20:12AM							
		%	· <u> </u>		<u> </u>		Perc	ent of	Net Bc	bard Fe	oot Volu	ime				Average	e Log	Logs
	S So Gr	Net	Bd. Ft	t, per Acre	د	Total	L	.og Scr	alc Dia.			Log Le	ength		Ln	Bđ	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-30 3	31-35	36-99	Ft	Ft	Lſ	/Acre
DF	T CU									<u> </u>	<u> </u>				10		0.00	1.
DF	T 2M	80	.9	48,320	47,907	2,204			7	93	i		1	99	40	869	4.23	55.
\mathbf{DF}	Т ЗМ	18	.8	10,813	10,722	493		44	46	9	i i	0	8	92	38	149	1.17	71.
DF	T 4M	2		844	844	39 -	38	62			41	52	7		20	23	0.42	36.
DF	Totals	100	.8	59,978	59,473	2,736	1	9	14	76	1	1	2	96	34	361	2.26	164.
Tota	ıls		0.8	59,978	59,473	2,736	1	9	14	76	1	1	2	96	34	361	2.26	164

								Stock Tab										
T11	IS R	09W S09 '	Гу000	1 46	5.00	<u> </u>	Proj Acre		ГВ	46.00					Page Date Time	6/2	1 26/2013 48:56A	
	s	So Gr			Def	Net	%						neter in		<u>r</u>			
Spp	Т	rt de	Len	MBF	%	MBF	Spc	2-3 4-5	6-7	8-9	10-11	12-13	14-15		20-23	24-29	30-39	40+
DF	Т	2M	32	20		20	.7							20				
DF	Т	2M	36	10		10	.4							10				
DF	Т	2M	40	2,193		2,174	79.5						42	347	678	646	362	
DF	Т	3M	26	2	·	2	.1			:	2							
DF	Т	3M	32	16		16	.6			2		• 3		11				
DF	T	3M		5		5	.2			5								
DF	т	3M		12		12	.4			2								
DF	Т	3M		6		6	.2			6								
DF	Т	3M	36	13		13	.5			9 1	3	i						
DF	Т	3M	37	8		8	.3			8								
DF	Т	3M	38	31		31	1,1		1	7	3		11					
DF	Т	3M	40	406	1.0	402	14.7		2	3 20	110	124	76	40	10			
DF	т	4M	12	3		3	.1			3								
DF	Т	4M	13	2		2	.1			2								
DF	т	4M	14	2		2	.1			2								
DF	Т	4M	15	2		2	.1			2						•		
DF	Т	4M	16	1		1	.0			1								
DF	Т	4M	17	1		1	.0			1								
DF	Т	4M	18	2		2	.1			2								
DF	Т	4M	19	1		1	.0			1								
DF	Т	4M	20	2		2	.1			2								
\mathbf{DF}	Т	4M	22	0		0	.0			0								
DF	Т	4M	23	3		3	.1			3	1							
DF	Т	4M	- 1	1		1	.0			1	1							
DF	Т	4M		15		15	.5	1:	5									
DF	Т	4M		1		1	.0			1								
DF	Т	4M		1		1	.0			1								
DF	Т	4M	33	3		3	.1			3								
DF		Totals		2,759		2,736	100.0	1:	5 10	3 23	116	127	128	429	689	646	362	
Total		All Specie	s	2,759		2,736	0.001	1:	5 10	3 23	116	127	128	429	689	646	362	

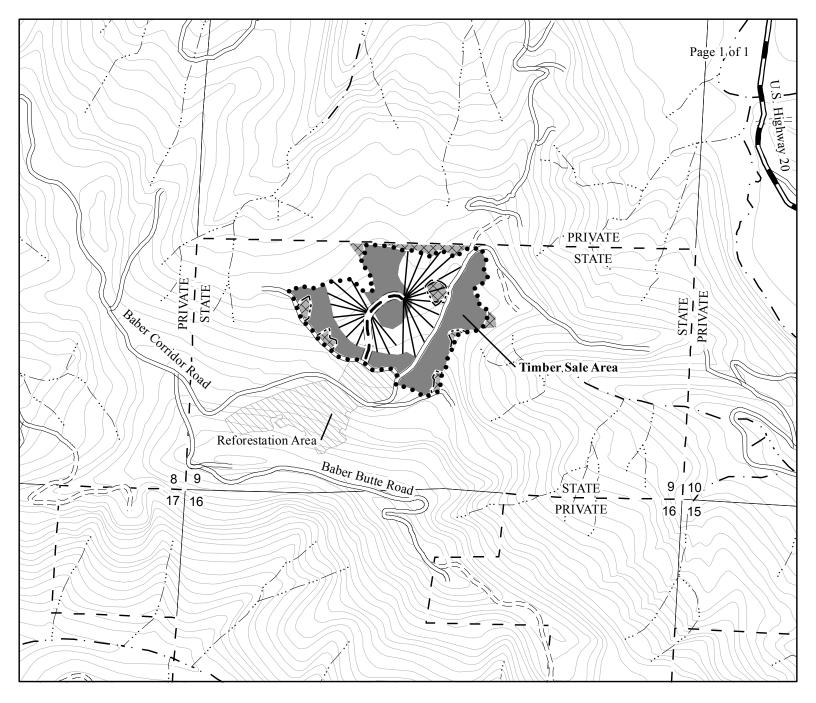
. .

.

TC	PSTNDSUM
	1311403014

T11S R09W S09 Ty0001

46.00


Stand Table Summary

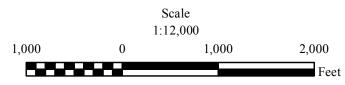
LTB

Project

1 6/26/2013 Page Date: 6:48:57AM Time: ~

							Acres		46.0	0			Grown Ye	ar:	
Spc T		Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averaş Net Cu.Ft.	ge Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	T o t a l s Cunits	MBF
DF T	8	1	89	45	10.832	3.78	10.83	7.0	30.0		76	325		35	15
DF T	12	1	89	83	4.814	3.78	9.63	12.0	40.0		116	385		53	18
DF T	14	1	93	107	3.537	3.78	7.07	24.0	100.0		170	707		78	33
DF T	16	1	82	115	2.708	3.78	5.42	30.0	105.0		162	569		75	26
DF T	18	2	89	105	4.279	7.56	8.56	38.3	142.5		327	1,220		151	56
DF T	22	2	87	114	2.865	7.56	7.16	48.4	170.0		347	1,217		159	56
DF T	24	3	84	140	3.611	11.34	12.04	50.7	216.0		610	2,600		281	120
DF T	28 -	11	87	125	9.727	41.59	28,30	69.5	299.7		1,967	8,480		905	390
DF T	30	5	90	126	3.851	18.91	11.55	81.9	382.7		946	4,421		435	203
DF T	32	8	85	133	5.416	30.25	16.93	89.0	396.4		1,507	6,709		693	309
DF T	34	8	89	136	4.798	30.25	15.59	103.8	514.2	1 2 2	1,619	8,018		745	369
DF T	36	1	89	112	.535	3.78	1.60	106.7	476.7		171	765		79	35
DF T	40	5	90	141	2.166	18.91	7,80	133.5	683.9		1,041	5,334		479	245
DF T	42	2	84	125	.786	7.56	2.36	150.7	683.3		355	1,611		163	74
DF T	44	6	85	159	2.149	22.69	7.88	168.9	852.7		1,330	6,718		612	309
DF T	46	2	79	136	.655	7.56	2.29	160.4	708.6		368	1,625		169	75
DF T	48	4	87	146	1.204	15,12	4.51	185.8	942.0		839	4,252		386	196
DF T	50	1	82	150	.277	3.78	1.11	184.5	827.5		205	918		94	42
DF T	54	1	92	173	.238	3.78	.95	274.3	1595.0		261	1,517		120	70
DF T	56	·· 2	87	153	.442	7.56	1.55	259.0	1345.7		401	2,082		184	96
DF T	Totals	67	88	110	64.890	253.33	163.13	78.6	364.6		12,817	59,473		5,896	2,736
Totals		67	88	110	64,890	253,33	163.13	78.6	364.6		12,817	59,473		5,896	2,736

Legend


Boundaries

••• Timber Sale Boundary Green Tree Retention Area (Posted) State Forest Property Boundary Right of Way (Posted) Roads Highway Surfaced Road Unsurfaced Road New Road Construction Streams - · Type F • -Type N ... ___ .. Yarding Method Tractor Yarding Area Cable Corridors 1.000 **Reforestation Area** Green Tree Retention Area $\times \times \times \times$

LOGGING PLAN

OF TIMBER SALE CONTRACT NO. 341-14-07 LEANING TOWERS OF BABER PORTIONS OF SECTION 9, T11S, R9W, W.M. LINCOLN COUNTY, OREGON

This product is for informational use and may not have been prepared for or be suitable for legal, engineering or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of this information.

NET ACRES CABLE = 17 NET ACRES TRACTOR = 24

Ν

Created By: Blake McKinley bmckinley@odf.state.or.us Date: 06/07/2013