District: Astoria Date: September 06, 2012 # cost summary | | Conifer | Hardwood | Total | |----------------------------|--------------|-------------------|---------------| | Gross Timber
Sale Value | \$417,806.06 | \$14,409.42 | \$432,215.48 | | | | Project Work: | \$(36,377.00) | | | | Advertised Value: | \$395,838.48 | 9/6/12 District: Astoria Date: September 06, 2012 # timber description Location: Portions of Sections 1, 12, and 13, T7N, R6W, W.M., Clatsop County, Oregon. Stand Stocking: 40% | SpecieName | AvgDBH | Amortization (%) | Recovery (%) | |-----------------------|--------|------------------|--------------| | Douglas - Fir | 15 | 0 | 96 | | Western Hemlock / Fir | 13 | 0 | 95 | | Alder (Red) | 9 | 0 | 98 | | Volume by Grade | 2S | 3S | 4S | Camprun | Total | |-----------------------|-----|-----|-----|---------|-------| | Douglas - Fir | 527 | 405 | 79 | 0 | 1,011 | | Western Hemlock / Fir | 390 | 416 | 119 | 0 | 925 | | Alder (Red) | 0 | 0 | 0 | 61 | 61 | | Total | 917 | 821 | 198 | 61 | 1,997 | "STEWARDSHIP IN FORESTRY" District: Astoria Date: September 06, 2012 comments: Pond Values Used: 2nd Quarter Calendar Year 2012. Expected Log Markets: Warrenton, OR; Tillamook, OR; Clatskanine, OR; Mist, OR; Longview, WA. Sitka Spruce Stumpage Price = Pond Value minus Logging Cost \$126.71/MBF = \$405/MBF - \$278.29/MBF Western redcedar Stumpage Price = Pond Value minus Logging Cost \$671.71/MBF = \$950/MBF - \$278.29/MBF SCALING COST ALLOWANCE = \$5.00/MBF FUEL COST ALLOWANCE = \$4.00/Gallon HAULING COST ALLOWANCE Hauling costs equivalent to \$780 daily truck cost. Other Costs (with Profit & Risk to be added): Additional Logging Costs: Branding and Painting: \$1 per MBF x 1,997 MBF = \$1,997 Scarification in Patch Cuts (Area 2)w/log loader = 6 hrs x \$90.00/hr = \$540.00 TOTAL Other Costs (with Profit & Risk to be added) = \$2,537 Other Costs (No Profit & Risk added): Open old spurs(existing): 6 hours w/315 excavator @ \$94/hour = \$564 6 hours with 14G Grader @ \$93/hour = \$558 4 hours to close @ \$94/hour = \$376 Machine Washing Invasive Weeds = \$3,000 TOTAL Other Costs (No Profit & Risk added) = \$4,498 District: Astoria Date: September 06, 2012 # logging conditions No **combination#: 1** Douglas - Fir 79.00% Western Hemlock / Fir 79.00% Alder (Red) 79.00% yarding distance: Medium (800 ft) Adder (Red) 79.00% downhill yarding: logging system: Track Skidder Process: Harvester Head Delimbing tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF loads / day: 8.0 bd. ft / load: 3,800 **cost / mbf:** \$136.67 machines: Forwarder Harvester combination#: 2 Douglas - Fir 21.00% Western Hemlock / Fir 21.00% Alder (Red) 21.00% 21.00% yarding distance: Medium (800 ft) downhill yarding: No logging system: Cable: Small Tower <=40 Process: Manual Delimbing tree size: Small / Thinning 12in (130 Bft/tree), 12-17 logs/MBF loads / day: 4.0 bd. ft / load: 3,900 cost / mbf: \$173.14 machines: Log Loader (A) Tower Yarder (Small) District: Astoria Date: September 06, 2012 # logging costs Operating Seasons: 2.00 Profit Risk: 14.00% **Project Costs:** \$36,377.00 **Other Costs (P/R):** \$2,537.00 Slash Disposal: \$0.00 Other Costs: \$4,498.00 ### Miles of Road Road Maintenance: \$11.13 | Dirt | Rock
(Contractor) | Rock
(State) | Paved | | |------|----------------------|-----------------|-------|--| | 0.0 | 0.0 | 0.0 | 0.0 | | ### **Hauling Costs** | Species | \$/MBF | Trips/Day | MBF / Load | |-----------------------|--------|-----------|------------| | Douglas - Fir | \$0.00 | 3.0 | 4.0 | | Western Hemlock / Fir | \$0.00 | 2.0 | 3.8 | | Alder (Red) | \$0.00 | 2.0 | 3.0 | District: Astoria Date: September 06, 2012 # logging costs breakdown | Logging | Road
Maint | Fire
Protect | Hauling | Other
P/R appl | Profit &
Risk | Slash
Disposal | Scaling | Other | Total | |-----------------------|---------------|-----------------|----------|-------------------|------------------|-------------------|---------|--------|----------| | Douglas - Fir | | | | | | | | | | | \$144.33 | \$11.58 | \$4.39 | \$59.30 | \$1.27 | \$30.92 | \$0.00 | \$5.00 | \$2.25 | \$259.04 | | Western Hemlock / Fir | | Fir | | | | | | | | | \$144.33 | \$11.69 | \$4.39 | \$94.53 | \$1.27 | \$35.87 | \$0.00 | \$5.00 | \$2.25 | \$299.33 | | Alder (Red) | | | | | | | | | | | \$144.33 | \$11.35 | \$4.39 | \$116.32 | \$1.27 | \$38.87 | \$0.00 | \$5.00 | \$2.25 | \$323.78 | | Specie | Amortization | Pond Value | Stumpage | Amortized | |-----------------------|--------------|------------|----------|-----------| | Douglas - Fir | \$0.00 | \$529.25 | \$270.21 | \$0.00 | | Western Hemlock / Fir | \$0.00 | \$455.68 | \$156.35 | \$0.00 | | Alder (Red) | \$0.00 | \$560.00 | \$236.22 | \$0.00 | "STEWARDSHIP IN FORESTRY" District: Astoria Date: September 06, 2012 ## summary ### Amortized | Specie | MBF | Value | Total | |-----------------------|-----|--------|--------| | Douglas - Fir | 0 | \$0.00 | \$0.00 | | Western Hemlock / Fir | 0 | \$0.00 | \$0.00 | | Alder (Red) | 0 | \$0.00 | \$0.00 | ### Unamortized | Specie | MBF | Value | Total | |-----------------------|-------|----------|--------------| | Douglas - Fir | 1,011 | \$270.21 | \$273,182.31 | | Western Hemlock / Fir | 925 | \$156.35 | \$144,623.75 | | Alder (Red) | 61 | \$236.22 | \$14,409.42 | ### **Gross Timber Sale Value** **Recovery:** \$432,215.48 Prepared by: Edward Holloran Phone: 503-325-5451 ### **SUMMARY OF ALL PROJECT COSTS** | SALE NAME | Thin To Win | | | | |---------------|---|--------------------------|--|-------------| | ROAD CONS | TRUCTION: | | | | | Project No. 1 | Road segment
4A-4B | Length/Sta
1.50 | <u>Cost</u>
\$3,361.00 | | | | | | | | | | TOTALS | 1.50 | | \$3,361.00 | | ROAD IMPRO | OVEMENT: | 0.03 Mile | es | | | | Road segment
11-12, 13-14
15-16, 17-18 | <u>Length/Sta</u>
176 | <u>Cost</u>
\$21,610.00 | | | | TOTALS | 176.00
3.33 Mile | | \$21,610.00 | | SPECIAL PRO | DJECTS: | 3.33 Wille | 5 | | | | Project Road Mainte | | <u>Cost</u>
\$6,195.00 | WO 405 00 | | MOVE IN | TOTAL | , | | \$6,195.00 | | MOVE IN: | Equipm Dump Trucks (12cy 2) Dump Trucks (20cy 2) F E Loader (C966) Grader (14G) Vibratory Roller Water Truck (2,500 g Excavator (C330) Excavator (C315) | x 4)
x 3) | Cost
\$564.00
\$498.00
\$675.00
\$675.00
\$165.00
\$1,220.00
\$699.00 | | | | TOTAL | | 18-38-3 | \$5,171.00 | | GRAND TOTA | L | 2000 | | \$36,337.00 | | Compiled By: | B Rodgers | FL | Date: _ | 05/24/2012 | #### SUMMARY OF CONSTRUCTION COSTS | SALE NAME: | Thin To Win | Thin To Win | | | NEW C | ONSTRUCTION: _
MPROVEMENT: _ | 1.50 | STATIONS | 0.03 | | |-------------|------------------|---------------------|------|--|----------|--|------------|----------|-------|------| | ROAD: | 4A to 4B | | | | i | MPROVEMENT: | | STATIONS | | MILE | | POINTS: | | | | | | | | | | | | CLEARING & | GRUBBING | | | | | | | | | | | | Method | | | Acres/amount | X | Rate | = | Cost | | | | 4A to 4B | Scattering | | | 0.14 | Х | \$1,161.00 | = | \$162.54 | | | | | | | | | X | | = | | | | | | | | | | X | | = | | | | | | | | | | Х | | = | | | | | | | | | | | | | | | | | SUB TOTAL F | FOR CLEARING 8 | & GRUBBING | | | | | | | \$163 | | | | | | * | | | | | | | | | EXCAVATION | | | | 1 1 | | | | i | | | | | Material | | | Cy/amount | X | Rate | = | Cost | | | | 4A to 4E | Balanced Const | | | 1.50 | х | \$106.00 | = | \$159.00 | | | | | Landing Constru | uction \$\$/landing | 9 | 1.00 | x | \$338.00 | = | \$338.00 | | | | | | | | | Х | | = | | | | | | | | | | X | | = | | | | | | | | | | х | | = | | | | | | | | | | X | | = | | | | | | | | | | x | | = | | | | | | | | | | x | | = | | | | | | | | | | x | | = | | | | | | | | | | x | | = | | | | | | | | | | х | | = | | | | | | | | | | | | | | | | | SUB TOTAL F | OR EXCAVATIO | N | | | | | | | \$497 | | | | | | | | | | | | | | | CULVERT MA | TERIALS AND IN | ISTALLATION | | | | | | | | | | Location | Dia/type | Lineal ft. | Rate | Cost | Location | Dia/type | Lineal ft. | Rate | Cost | + | | | | | | | | | | | | + | | | | | | | | | | | | | | | | | ł | | | | | | | | - | | - | | | | | | | | | | | | | | | | | | | - | | | | | l | | <u> </u> | | | | | | | | - | | - | | | | | | | | | | | | | | LLL | | | | | | | | 5 | | 1 0 | D.1. | 01 | | | | | | | | Description | | Quantity | Rate | Cost | | | | | Other/miscellane | eous: | - | | | | | | | | | | | Culvert stakes & | markers: | | | | | | | | | | | Culvert stakes & | markers: | | | | | | | | | | | Culvert stakes & | _ | | | | | | | | | | SURFACING | Subgrade prep: | | Description | | | | | Stations/
amount | x | Rate/
sta/amt | Cost | | |-----------------------|--------------------|----------------|------------------|---------------|-------------|-------------|-----------|---------------------|---------------|------------------|---------------------------------------|---------| | | 4A to 4B | Grade, Shape a | | | | | | 1.50 | X | \$21.55 | \$32.33 | | | | 4A 10 4B | Subgrade Com | | | | | | 1.50 | x | \$17.52 | \$26.28 | | | | | Cabgrado Com | Jackey | | | | | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | ROAD SEGMENT | 4A to 4B | | | POINT TO | POINT | Sta. to S | ita. | | | | | | | | | | Depth of | 4A to | 4B | 0+00 to 1 | +50 |
TOTAL | Rate/ | Cost | | | | Application | Rock Size and Type | Location | Rock
(inches) | Volume
per | | Numbe
of | er | VOLUME
(CY) | Sta./
amt. | Just | | | | Base Rock | 6"-0" | 0+00 -1+50 | 10 | station | 63 | stations | 1.50 | 95 | \$13.52 | \$1,278 | | | | Junctions | 1 1/2"-0" | 0+00 | N/A | junction | 22 | junctions | 1 | 22 | \$4.68 | \$103 | | | | Landings | 6"-0" | 1+50 | N/A | Landing | 66 | Landings | 1 | 66 | \$13.52 | \$892 | | | | Total Rock for Road S | | | 4A to 4B | | | | | 183 | | | \$2,273 | | | | | Processing: | | Description | | | | | No.sta | Rate/sta | Cost
\$0 | | | | | | | | 6"-0"pr | | 1 1/2"-0" | | Total | <u> </u> | | | | | SUB TOTAL FO | R SURFACING | | | 161 | | 22 | | 183 | 183 | | \$2,33 | | | SPECIAL PROJ | ECTS | | | | | | | | | , , , , , , , , , , , , , , , , , , , | | | | | | | | escription | | | | Cost | • | | | | | | | - | Develop Pit F | Run (\$2.30 |) x 161) | | | \$370 | - | | | | | SUB TOTAL FO | D SDECIAL DRI | TIECTS | | | | | • | | • | | \$37 | | | 30D TOTAL FO | I OI LOIAL FIN | 302010 | | | | | 11/4/14/14 | Subtotal o | f Surfacing & S | Spec. Proj. | \$2,70 | | | | | | | | | | | | al of Clearing, | | \$66 | | | GRAND TOTAL | | | | | | | | | | | \$3,361 | | | Compiled By: | Bryce Rodgers | | | | | | | Date: | 05/24/2012 | | | #### SUMMARY OF CONSTRUCTION COSTS | ALE NAME:
OAD:
OINTS: | Thin To Win 11-12(101), 13-14(24), 15-16(26), 17-18(25) | | | | NEW CO | ONSTRUCTION: _
MPROVEMENT: _ | 176.00 | STATIONS | 3.33 MIL | |-----------------------------|---|--------------------------|--------------|--------------|-------------|---------------------------------|---------------|---------------------|---| | LEARING & | GRUBBING | | | | | | | | | | | Method | | | Acres/amount | x | Rate | = | Cost | | | | | | | | X | | = | | | | | | | | | x | | = | | | | | | | | | × | | = | | | | | | | | | X | | = [| | | | UB TOTAL F | OR CLEARING | & GRUBBING | i | | | | | | | | XCAVATION | | | | t | | | | | | | | Material | | | Cy/amount | X | Rate | = | Cost | | | | | | | | x | | = | | | | | | | | | × | | = | | | | | | | | | X | | = | | | | | | | | | X | | = - | | | | | V | | | | X | | = | | | | • | | | | | X | <u> </u> | = } | | | | | | | | | X | | = | | | | | | ···· | | <u> </u> | X | | _ | | | | | | | | | X | | , i | | | | | | | | | × | | = = | | | | | | | | | Х | | - L | | | | JB TOTAL F | OR EXCAVATION | N | | | · · · · · · | | | | | | JLVERT MA
Location | TERIALS AND II
Dia/type | NSTALLATIO
Lineal ft. | N
Rate | Cost | Location | Dia/type | Lineal ft. | Rate | Cost | *************************************** | ļ | | | | | | | | | | | ļl | | | | | | | | | | | | | | | | | | <u>-</u> | l | | | | | | | | | | | | | | Б 10 | | 1 0 | D-4- I | 04 | | | | | | | Description | | Quantity | Rate | Cost | | | | Other/miscellan | eous: | | | | - | | | | | | | | 0.1 | | | ļ | M10.00 | #100.00 | | | | Culvert stakes & | k markers: | Culvert Mark | ers | | 7 | \$18.00 | \$126.00 | | | | | | | | | | | | | | | | | DIOTALL (*** | | | | | | 6100 | | R LOTAL E | OR CULVERT M | A I ERIALS & | INSTALLATIO | N | | | 0 | (| \$126 | | | | | | | | | Subtotal of C | learing, Exc.,Culv. | \$126 | | SURFACING | | | | | | | | Stations/ | | Rate/ | | | | |------------------------|----------------|------------------|-------------|------------------|---------------|-------------------|-------------|-----------|-------------|-----------------|-------------|---------------------|--| | | Subgrade prep: | | Description | | | | | amount | X | sta/amt | Cost | | | | | | Grade, Shape a | | | 13-14, 15-16, | | | 176.00 | × | \$21.55 | \$3,792.80 | | | | | | Scatter ditch wa | | | | | 8 (24.2) | 75.15 | × | \$10.78 | \$810.12 | | | | | | Load & haul dito | h waste mat | erial 13-14 (6.: | 25) 17-18 (.8 | 3) | | 7.05 |] × | \$19.89 | \$140.22 | | | | ROAD SEGMENT | l1 to l2 | | | POINT TO | POINT | Sta. to | Sta. | | | | | | | | ROAD SLOWLIN | 11.1012 | T T | Depth of | I1 to | | 0+00 to 1 | | TOTAL | Rate/ | | | | | | | Rock Size | | Rock | Volume | | Numl | | VOLUME | Sta./ | Cost | | | | | Application | and Type | Location | (inches) | pei | | of | | (CY) | amt. | | | | | | Base Rock | 1 1/2"-0" | | N/A | Load | 10 | loads | 101.00 | 1,010 | \$4.68 | \$4,727 | 1 | | | | Surfacing | 1 1/2"-0" | 95+00 | 1,911 | Load | 10 | loads | 2.00 | 20 | | * | Cost in Spe | cial Projects | | | Base Rock | 6"-0" Pit-run | 95+00 | | Load | 10 | loads | 5.00 | 50 | | * | Cost in Spe | cial Projects | | | Barriers/Armor | 36"-12" Riprap | 95+00 | | Load | 10 | loads | 2.00 | 20 | | * | Cost in Spe | cial Projects | | | Total Rock for Road Se | | | I1 to I2 | | | | | 1,100 | | | \$4,727 | - | | | ROAD SEGMENT | 13 to 14 | | | POINT TO | POINT | Sta. to | Sta. | | | | | | | | | | | Depth of | I3 to | 14 | 0+00 to | 24+00 | TOTAL | Rate/ | Cost | | | | | | Rock Size | | Rock | Volume | (CY) | Numi | ber | VOLUME | Sta./ | Cost | | | | | Application | and Type | Location | (inches) | pei | | of | | (CY) | amt. | | | | | | Base Rock | 1 1/2"-0" | | N/A | Load | 10 | loads | 24.00 | 240 | \$4.68 | \$1,123 | | | | | Total Rock for Road Se | egment: | | 13 to 14 | | | | | 240 | | | \$1,123 | | | | ROAD SEGMENT | 15 to 16 | | | POINT TO | POINT | Sta. to | Sta. | | | | | | | | | | | Depth of | I5 to | 16 | 0+00 to | 26+00 | TOTAL | Rate/ | Cost | | | | | | Rock Size | | Rock | Volume | (CY) | Numl | ber | VOLUME | Sta./ | CUST | | | | | Application | and Type | Location | (inches) | pei | - | of | | (CY) | amt. | | | | | | Subgrade Leveling | 1 1/2"-0" | | N/A | Load | 10 | loads | 10.00 | 100 | \$4.68 | \$468 | | | | | Total Rock for Road Se | egment: | | 15 to 16 | | | | | 100 | | | \$468 | | | | ROAD SEGMENT | 17 to 18 | | | POINT TO | POINT | Sta. to | Sta. | | | | | | | | | | | | Depth of | 17 to | 18 | 0+00 to | 25+00 | TOTAL | Rate/ | Cost | | | | A U notion | Rock Size | | Rock | Volume | (CY) | Numl | ber | VOLUME | Sta./ | Oosi | | | | | Application | and Type | Location | (inches) | pei | • | of | | (CY) | amt. | | | | | | Base Rock | 1 1/2"-0" | | N/A | Load | 10 | loads | 25.00 | 250 | \$4.68 | \$1,170 | | | | | Total Rock for Road Se | egment: | | 17 to 18 | | | | | 250 | | | \$1,170 | Processing: | | Description | | | | | No.sta | Rate/sta | Cost | | | | | | | Water, Prod | cess & Comp | act: 11 | I-12, I3-14, I7-1 | 8 | | 150.00 | \$49.02 | \$7,353 | 36"-12" | 6"-0"pr | 4"-0" | 1 1/2"-0" | | Total | | L | | | | | SUB TOTAL FO | R SURFACING | | 20 | 50 | 0 | 1,620 | | 1,690 | 1,690 | | \$19,584 | | | | OUD TOTALT | AL COLLI MONTO | | | | | 1,0=0 | 1 | | | | | | | | SPECIAL PROJ | IECTS | | | | | | | | | | | | | | | | | D | escription | | | | Cost | | | | | | | | | | | | (I1 to I2 Sta. | | | \$ 1,900.00 | | | | | | | | | • | (8hrs. C330, | 8hrs. 10-1: | 2cy Dump Tru | ck, Seed ar | nd Mulch) | | | | | | | | | | | *(Includes ro | ck haul, de | velopment) | | | | | | | | | | | | • | | | | | | | | | | | | | SUB TOTAL FO | R SPECIAL PRO | DJECTS | | | | | | Subtotal o | f Surfacing & | Spoo Broi | \$1,900
\$21,484 | | | | | | | | | | | | | al of Clearing, | | \$126 | | | | GRAND TOTAL | | | | | | | | | | | \$21,610 | | | | | | | | | | | | | | | | | | | Compiled By: | B. Rodgers | | | | | | | Date: | 05/24/2012 | - | | | | | | | | | | | | | | | | | | #### CRUSHED ROCK COST | SALE NAME: | Thin To Win | | | DATE: | 05/24/2012 | |------------|-----------------|-----------|---------|-------|------------| | PROJECT: | No. 1 | MATERIAL: | Crushed | BY: | B. Rodgers | | QUARRY: | Kerry Stockpile | | | | | | | | | | | | | | | | - | | |--------------|--|---------|--------|--------|--------|------------|--------|------|------------------------|---------|--| | Road | Ctations | Cubic | | | | AY HAUL IN | | | | Total | | | Segment | Stations | Yards | 50 MPH | 30 MPH | 25 MPH | 20 MPH | 15 MPH | | 5 MPH | Haul | | | 11 to 12 | 101.00 | 1,010 | | 2 | 1 | 0.50 | 0.25 | 0.25 | 0.16 | 4.16 | | | 13 to 14 | 24.00 | 240 | | 2 | 2 | 0.75 | 0.25 | 0.18 | 0.15 | 5.33 | | | 15 to 16 | 26.00 | 100 | | 2 | 2 | 0.75 | 0.25 | 0.20 | 0.15 | 5.35 | | | 17 to 18 | 25.00 | 250 | | 3 | 2 | 1.00 | 0.30 | 0.18 | 0.15 | 6.63 | | | 4A to 4B | 1.50 | 22 | | 3 | 2 | 1.00 | 0.40 | 0.20 | 0.18 | 6.78 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | 1 | | | | | | | | | | | | Control of the Control | 1 | | | | | | | | | | | | | i | | | | | | | | | | | | | i | | | | | | | | | | | | | 1 | - | | | | | | | | | | | | *************************************** | | | | | | | | |] | TOTAL | 177.50 | 1,622 | | | | | | ļ | | AVERAGE | | | | STA./NO. | CU. YD. | | | | | | | | HAUL | | | CUBIC YARD V | | | | 2.17 | 1.38 | 0.64 | 0.26 | 0.23 | 0.16 | 4.82 | | | | Average Round Trip Distance (miles) 9.65 | | | | | | | | | | | #### ROCK HAUL: | Truck type: | D20 | No. trucks: | 3 | _ | |
|-------------|-----|-----------------|-----|----------------------|-------| | Delay min.: | 8 | Efficiency: | 85% | Ave haul: \$3.51 | /cy | | | | | | Load: \$0.45 | /cy | | Truck type: | D12 | No. trucks: _ | 4 | Spread: \$0.73 | /cy | | Delay min.: | 6 | Efficiency: | 85% | | | | | | | | | | | Truck type: | D10 | _ No. trucks: _ | | Production: cy/day = | 1,309 | | Delay min.: | 5 | Efficiency: | 85% | | | CRUSHED ROCK HAUL COSTS 1,622 cy @ \$4.68 /cy #### PIT RUN ROCK COST | SALE NAME:
PROJECT: | - | Thin To Wir
No. 1 | 1 | | | MATE | RIAL: | ; F | Pit Ru | ın | | | I | DATE:
BY: | | | /2012
dgers | | |------------------------|----------|----------------------|----|-----|----|------|-------|-----|--------|--------|----|-----|----|--------------|---|-----|----------------|--| | QUARRY: | | Viewpoint | | | | | | | | | | | | • | | | | | | Road | Stations | Cubic | | | | | _ | | | AUL IN | | | | | | | Total | | | Segment | Otations | Yards | 50 | MPH | 30 | MPH | 25 | MPH | 20 | MPH | 15 | MPH | 10 | MPH | 5 | MPH | Haul | | | 4A to 4B | 1.50 | 161 | | | | 6 | | 2 | 1 | .00 | 0. | .40 | 0. | .20 | 0 | .18 | 9.78 | | | Road | Stations | Cubic | | | | AY HAUL IN | | | | Total | |--|----------|---------|--------|--------|--------|-------------|---------------|-------------|-------|---------| | Segment | | Yards | 50 MPH | 30 MPH | 25 MPH | 20 MPH | 15 MPH | 10 MPH | 5 MPH | Haul | | 4A to 4B | 1.50 | 161 | | 6 | 2 | 1.00 | 0.40 | 0.20 | 0.18 | 9.78 | | | | | | | | | | | | | | ······································ | p |] | | | | | | | | | | | |] | | | | | | | | | | | |] | ļ | TOTAL | 1.50 | 161 | | | | | | | | AVERAGE | | | STA./NO. | CU. YD. | | | | | | | | HAUL | | CUBIC YARD | | | | 6.00 | 2.00 | 1.00 | 0.40 | 0.20 | 0.18 | 9.78 | | | | | - | | A | verage Rour | nd Trip Dista | nce (miles) | 19.56 | | #### **ROCK HAUL:** Truck type:___ D20 No. trucks: Delay min.: 8 Efficiency: 85% Ave haul: \$7.70 /cy Load: \$4.03 /cy Truck type:__ D12 No. trucks: Spread: \$1.79 /cy 85% Delay min.: Efficiency: Production: cy/day = Truck type:_ D10 No. trucks: 151 Delay min.: Efficiency: 85% 5 PIT RUN ROCK HAUL COSTS 161 cy @ \$13.52 /cy ### **Projects Road Maintenance Cost Summary** Sale: Thin To Win Date: May 24, 2012 Ву: Bryce Rodgers | Туре | Equipment/Rationale | Hours | Rate | Cost | | |-----------------------|---|----------------|----------------------|-------------------------------|-------| | Post-Projects
Road | Grader 14G
Vibratory Roller
Water Truck 2500 gallon | 30
30
15 | \$93
\$72
\$83 | \$2,790
\$2,160
\$1,245 | | | | | | | | Total | #### **Final Road Maintenance** Production Rates Grader Vibratory Roller | Miles/day | Distance(miles) | Days | Hours | |-----------|-----------------|------|-------| | 1.5 | 4.5 | 3.0 | 30 | | 1.5 | 4.5 | 3.0 | 30 | \$6,195 Maintain from Kerry Stockpile to Point I1. Maintain from Point I2 to Point I7. Total Miles: 4.5 miles. ^{*}Maintenance calculations were determined as follows: #### **Road Maintenance Cost Summary (Interim and Post Harvest)** Sale: Thin To Win MBF: 1,997 Date: June 18, 2012 \$\$/MBF: \$11.13 By: Ed Holloran | | | Move-in | 1 | | | | |-------------|--------------------------|---------|-------|-------|------|---------| | Туре | Equipment/Rationale | Rate | Times | Hours | Rate | Cost | | | | | | | | | | Interim | Grader 14G | \$675 | 1 | 8 | \$93 | \$1,419 | | Road | Dump Truck 12CY | \$141 | 1 | 8 | \$73 | \$725 | | Maintenance | FE Loader C966 | \$675 | 1 | 8 | \$77 | \$1,291 | | | Grader 14G | \$675 | 1 | 66 | \$93 | \$6,813 | | | Dump Truck 12CY | \$141 | 2 | 16 | \$73 | \$1,450 | | Final | FE Loader C966 | \$675 | 1 | 8 | \$77 | \$1,291 | | Road | Vibratory Roller | \$675 | 1 | 66 | \$72 | \$5,427 | | Maintenance | Water Truck 2,500 gallon | \$165 | 1 | 33 | \$83 | \$2,904 | | | Labor | | | 24 | \$38 | \$912 | | | | | | | | | | | | | | | | | | Total | | | | | | | ### Final Road Maintenance | Production Rates | Miles/day | Distance (miles) | Days | Hours | |------------------|-----------|------------------|------|-------| | Process - Grader | 1.5 | 9.9 | 6.6 | 66.0 | | Vibratory Roller | 1.5 | 9.9 | 6.6 | 66.0 | Process and Compact: West Creek Ridge (4.5 miles), East Kerry (3.9 miles), In unit spurs (1.5 miles) Total Miles = 9.9 miles # THIN TO WIN TIMBER CRUISE REPORT FY 2013 **Sale Area Location:** Areas 1, 2, 3, 4, 5, and 6 are located in portions of Sections 1, 12, and 13, T7N, R6W, W.M., Clatsop County, Oregon. 2. Fund Distribution: **BOF 100%** Tax Code 1-02 (30.9%), 30-05 (68.7%), AND 6J-01 (0.4%) 3. Sale Acreage by Area: | Area | Treatment | Gross
Acres | Patch
Cuts | GTRA | Existing
R/W | New
R/W | Stream
Buffer | Net
Acres | Survey
Method | |--------|--------------|----------------|---------------|------|-----------------|------------|------------------|--------------|------------------| | 1 | Partial Cut | 40 | 0 | 0 | 4.0 | 0 | 0.5 | 35.5 | GIS | | 2 | Partial Cut | 109 | 3.2 | 0.1 | 6.0 | 0 | 0.2 | 99.5 | GIS | | 3 | Partial Cut | 30 | 0 | 0 | 1.0 | 0 | 1.0 | 28.0 | GIS | | 4 | Partial Cut | 30 | 0 | 0 | 0.7 | 0.3 | 0 | 29.0 | GIS | | 5 | Partial Cut | 29 | 0 | 0 | 1.0 | 0 | 0 | 28.0 | GIS | | 6 | Partial Cut | 10 | 0 | 0 | 1.0 | 0 | 0 | 9.0 | GIS | | 7 | Patch cuts | 3.2 | 0 | 0 | 0 | 0 | 0 | 3.2 | GIS | | 8 | Right-of-Way | 0.3 | 0 | 0 | 0 | 0 | 0 | 0.3 | GIS | | TOTALS | | 251.5 | 3.2 | 0.1 | 13.7 | 0.3 | 1.7 | 232.5 | | **4. Cruisers and Cruise Dates:** Areas 1, 3, 4, 5, and 6 were cruised by Justin Dalton, Jay Morey, Jason McCoy, Kevin Berry, Bryce Rodgers, and Ed Holloran. Area 2 was cruised by John Tillotson, Jay Morey, Bryce Rodgers, and Ed Holloran in May, 2012. #### 5. Cruise Method and Computation: <u>Areas 1, 3, 4, 5, and 6 (partial cuts)</u> -- These sale areas were variable plot cruised using a 20 BAF. 46 plots were sampled on a cruise grid of 6 chains by 5 chains, with a count/cruise ratio of 1:1. Area 2 (partial cut) – This area is a partial cut with 7 patch cuts scattered within it. The area was variable plot cruised using a 33.61 BAF. 25 plots were sampled on a cruise grid of 6 chains by 6 chains, with a count/cruise ratio of 1:1. Area 7 (patch cuts) -- consists of 6 patch cuts within Area 2. Area 8 R/W Right-of-way volume was calculated by multiplying the R/W acreage and the average volume per acre from the plots in Areas 1, 3, 4, 5, and 6. Right-of-way totals 0.3 acres All cruisers used Corvallis Micro Technology (CMT) data collectors, and were downloaded to the Atterbury <u>Super A.C.E.</u> program in District for computing. See the attached <u>Cruise Design</u> for more details on the cruise method. The cruise calculations were processed in the Astoria district office. | AREA | CRUISE | TRACT | TYPE | <u>ACRES</u> | |-------------------|--------------|-------|------|--------------| | 1, 3, 4, 5, and 6 | T07N R06W 12 | 13456 | TAKE | 129.5 | | 2 | T07N R06W 13 | 2 | TAKE | 99.5 | | 7 (Area 2) | T07N R06W 13 | 7 | MCC | 3.2 | | 8 R/W | T07N R06W | 9 | R/W | 0.3 | #### 6. Timber Description: <u>Areas 1, 3, 4, 5, and 6 (partial cuts)</u> – These stands are first entry thinnings, approximately 30 to 70 years old, consisting of Douglas-fir, western hemlock, red alder, and noble fir. The average "take" volume per acre is 6 MBF, tree size is 12 inches DBH, and 37 feet to a merchantable top (6" D.I.B. or 40% of the diameter at 16 feet <u>Area 2 (partial cut)</u> – These stands are approximately 75 years old that has been thinned previously, consisting of Douglas-fir, and western hemlock. The average "take" volume per acre is 11 MBF, tree size is 17 inches DBH, and 67 feet to a merchantable top (6" D.I.B. or 40% of the diameter at 16 feet Area 7 (patch cuts) These patch cuts are within Area 2. The average "take" volume per acre is 39 MBF, tree size is 19 inches DBH, and 73 feet to a merchantable top (6" D.I.B. or 40% of the diameter at 16 feet). <u>Area 8 R/W</u> is similar to the timber description mentioned above for Areas 1 and 2. The average volume (net) is 19 MBF/acre. ### 7. Statistical Analysis and Stand Summary: (See "Statistics" - Type Reports, attached) Statistics for Stand Net B.F. /Acre volumes | Area | Estimated CV | Target SE% | Actual CV | Actual SE% | |-----------------|--------------|------------|-----------|------------| | 1, 3, 4, 5, & 6 | 30% | 10% | 37.9% | 5.6% | | 2 | 45% | 9% | 24.4% | 5.0% | **8. Volumes by Species and Log Grade:** (See "Species, Sort, Grade" - Project Report, attached). Volumes by Species and Grade for All Sale Areas: (MBF) Volumes do not include "in-growth." | Species | DBH | Net Vol. | 2 Saw | 3Saw | 4 Saw | Camp Run | % D & B | % Sale | |------------------|-----|----------|-------|------|-------|----------|---------|--------| | Douglas-fir | 15" | 1,011 | 527 | 405 | 79 | _ | 3.3 | 51 | | Hemlock/True-fir | 13" | 925 | 390 | 416 | 119 | - | 11 | 46 | | Alder | 9" | 61 | _ | - | - | 61 | 2 | 3 | | TOTALS | | 1997 | 917 | 821 | 198 | 61 | | 100 | 9. Approvals: Prepared by:_____ Ed Holloran **Date:** May 23, 20 Unit Forester Approval; Date: // 10. Attachments: Cruise Designs and Maps – 8 pages Volume Reports
– 5 pages Statistics Reports – 6 pages Log Stock Tables – TAKE – 3 pages Stand Table Summary – TAKE – 2 pages X:\Sunset Unit\2013 FY Sales\Thin To Win\Sale Prep\Cruise\Thin_To_Win_Cruise_Report.docx | TC | PSPCSTGR | | Sı | pecies, S | Sort G | rade - Boar | d Fo | ot V | olum | es (P | roject | t) | | | | | | | |------------------|--------------------------------------|----------------|-------------------|-----------------------|-----------------------|-------------------|------|----------------|--------------|--------|--------------|---------------|---------------|---------------|----------------------|----------------------|------------------------------|-----------------------------| | | 07N R06W S1:
THRU
07N R06W S1: | - | | | | Project:
Acres | TT | W
232.5 | 50 | | | | | | 1 | Page
Date
Fime | 7/11/20
9:57:1 | 12 | | | | % | | | | | Per | cent of | Net B | oard F | oot Volu | ıme | | | | Average | e Log | Logs | | | S So Gr | Net | Bd. Ft | . per Acre | | Total | I | og Sca | ale Dia | | | Log L | ength | | Ln | Bd | CF/ | Per | | Spp | T rt ad | BdFt | Def% | Gross | Net | Net MBF | | | 12-16 | | 12-20 | 21-30 | 31-35 | 36-99 | Ft | Ft | Lf | /Acre | | H
H
H
H | DOCU
DO2S
DO3S
DO4S | 41
45
14 | 3.9
2.3
7.3 | 1,665
1,814
553 | 1,601
1,772
512 | 372
412
119 | 7 | 3
100
93 | 96
0 | 1 | 55 | 2
2
42 | 21
52
2 | 78
45 | 11
37
36
20 | 218
72
25 | 0.00
1.45
0.64
0.44 | 8.4
7.3
24.7
20.8 | | Н | Totals | 45 | 3.7 | 4,032 | 3,885 | 903 | 1 | 59 | 40 | 0 | 7 | 7 | 33 | 53 | 27 | 63 | 0.69 | 61.2 | | D
D
D
D | DOCU
DO2S
DO3S
DO4S | 52
40
8 | 1.9
2.1
1.4 | 2,312
1,778
346 | 2,268
1,741
341 | 527
405
79 | 6 | 17
99
94 | 74
1
0 | 9 | 2
2
68 | 10
5
29 | 7
27
3 | 80
65
0 | 6
36
36
19 | 224
82
24 | 0.00
1.55
0.66
0.40 | 2.5
10.1
21.3
14.1 | | D | Totals | 51 | 1.9 | 4,436 | 4,351 | 1,011 | 0 | 56 | 39 | 5 | 7 | 10 | 15 | 68 | 29 | 91 | 0.84 | 48.0 | | A | DOCR | 100 | | 260 | 260 | 61 | | 100 | | | 41 | 20 | | 38 | 23 | 34 | 0.40 | 7.7 | | A | Totals | 3 | | 260 | 260 | 61 | | 100 | | | 41 | 20 | | 38 | 23 | 34 | 0.40 | 7.7 | | NF
NF
NF | DOCU
DO2S
DO3S | 81
19 | 10.6 | 88
17 | 78
17 | 18
4 | | 100 | 81 | 19 | 19 | | 28
100 | 53
0 | 16
32
32 | 179
54 | 0.00
1.52
0.58 | .1
.4
.3 | | NF | Totals | 1 | 8.8 | 105 | 96 | 22 | | 18 | 66 | 16 | 16 | | 41 | 43 | 30 | 109 | 1.03 | .9 | | Tota | ıls | | 2.7 | 8,834 | 8,592 | 1,998 | 1 | 58 | 39 | 3 | 9 | 9 | 23 | 60 | 28 | 73 | 0.74 | 117.8 | | Т | TSPCSTG | R | | 1 | Species, | Sort G
Projec | rade - Boar
t: TTV | | oot V | 'olun | nes (7 | Гуре) | | | | Γ | Page
Date
Sime | 7/11/20
7:22:3 | | |-------------------|----------------------|----------------------|---------------------|--------------------|------------------------------|---------------------|-----------------------|----------|-----------------|--------|----------|----------------|---------------|-----------------|----------|----------------------|----------------------|--------------------------------------|-----------------------------| | T07N
Tw
07N | | ge | Sec | Tract
 3456 | | Туре
ТАН | | | Plot
46 | | • | le Tree
05 | s | C
1 | uFt | BdF
W | `t | W S12 T | TAKE | | Spp | s _{So} | Gr
ad | %
Net
BdFt | Bd.
Def% | Ft. per Ac | re
Net | Total
Net MBF | <u> </u> | og Sc | ale Di | ia. | Log
12-20 | g Ler | - | 36-99 | Av
Ln
Ft | Bd
Ft | CF/
Lf | Logs
Per
/Acre | | H
H
H | DO
DO
DO
DO | CU
2S
3S
4S | 16
65
19 | 1.1
3.3
5.4 | 578
2,293
648 | 572
2,218
613 | 74
287
79 | 10 | 15
100
90 | 85 | | 64 | 10
33
8 | 33
52
3 | 57
48 | 13
35
36
19 | 198
72
24 | 0.00
1.43
0.61
0.41 | 11.4
2.9
30.9
25.8 | | H D D D D | DO DO DO DO | CU
2S
3S
4S | 38
4
73
23 | 16.0
4.6
2.1 | 3,518
100
1,411
423 | 84
1,346
415 | 11
174
54 | 8 | 97
92 | 100 | | 100
6
65 | 5 30 | 40 5 | 50 | 7
17
35
19 | 81
70
24 | 0.55
0.00
1.43
0.60
0.40 | 3.6
1.0
19.4
17.0 | | D | Totals | | 31 | 4.6 | 1,935 | 1,845 | 239 | 2 | 91 | 7 | | 23 | 10 | 30 | 36 | 25 | 45 | 0.54 | 41.0 | | A
A | DO Totals | CR | 100 | | 466 | 466 | 60 | | 100 | - | | 41 | 20 | | 38 | 23 | 34 | 0.40 | 13.8 | | NF
NF
NF | DO
DO
DO | CU
2S
3S | 81
19 | 10.6 | 157
31 | 140
31 | 18
4 | | 100 | 81 | 19
16 | 19 | | 28
100
41 | 53 | 16
32
32
30 | 179
54 | 0.00
1.51
0.58 | .2
.8
.6 | | Type | | | | 3.6 | 6,106 | 5,884 | 762 | 2 | 85 | 12 | 0 | 18 | 9 | 34 | 39 | 26 | 46 | 0.54 | 127.4 | | Т | TSPCS | TGR | | | İ | Species | , Sort G
Projec | rade - Boar
t: TTV | | ot V | olun | nes (T | Гуре) | | | | I | Page
Date
Sime | 1
7/11/20
7:43:1 | | |------------|--------|--------------------|----|-------------|-------------|--------------------|--------------------|-----------------------|-----------|--------|-----------------|--------|---------------|----------------|----------------|-------|-----------------|----------------------|------------------------|----------------------| | T07]
Tw | | W S1
Rge
06W | i | | Tract | | Type
TAI | | | Plot | | Sampl | le Trec
24 | es | C
1 | uFt | T07
BdF
W | | W S13 T | TAKE | | | | | | % | | | | | Pero | cent N | let Bo | ard Fo | ot Vo | lume | | | Av | erage I | Log | Laga | | Spp | S S | | | Net
BdFt | Bd.
Def% | Ft. per A
Gross | cre
Net | Total
Net MBF | Lo
4-5 | | ale Di
12-10 | | 1 | g Len
21-30 | _ | 36-99 | Ln
Ft | Bd
Ft | CF/
Lf | Logs
Per
/Acre | | D | D | Ю | CU | | | | | | | | | | | | | | 2 | | 0.00 | .9 | | D | D | Ю | 2S | 65 | 1.6 | 4,595 | 4,523 | 450 | | 19 | 75 | 6 | | 11 | 6 | 83 | 38 | 227 | 1.51 | 19. | | D | D | Ю | 3S | 31 | | 2,128 | 2,128 | 212 | | 100 | | | | 6 | 16 | 78 | 37 | 95 | 0.72 | 22. | | D | D | Ю | 4S | 4 | | 225 | 225 | 22 | | 100 | | | 74 | 26 | | | 18 | 23 | 0.39 | 9. | | D | Total | s | | 62 | 1.0 | 6,949 | 6,877 | 684 | | 47 | 49 | 4 | 2 | 10 | 9 | 79 | 33 | 130 | 1.02 | 53. | | Н | D | Ю | CU | | | | | | | | | | | | aya is to acco | | 5 | | 0.00 | 4. | | Н | | | 2S | 65 | 4.7 | 2,893 | 2,757 | 274 | | | 100 | | | | 16 | 84 | 38 | 222 | 1.44 | 12. | | Н | D | Ю | 3S | 26 | | 1,090 | 1,090 | 108 | | 100 | | | | 8 | 55 | 37 | 34 | 71 | 0.70 | 15. | | Н | D | Ю | 4S | 9 | 11.3 | 422 | 374 | 37 | | 100 | | | 37 | 63 | | | 20 | 27 | 0.50 | 14. | | Н | Total | s | | 38 | 4.2 | 4,405 | 4,221 | 420 | | 35 | 65 | | 3 | 8 | 24 | 65 | 28 | 91 | 0.91 | 46. | | Туре | Totals | | | | 2.3 | 11,354 | 11,098 | 1,104 | | 42 | 55 | 2 | 3 | 9 | 15 | 73 | 31 | 111 | 0.98 | 99. | | Т | TSPCSTG | R | | | Species, | Sort G
Projec | rade - Boar
t: TTV | | ot V | olun | nes (T | Гуре) | | | | I | Page
Date
Sime | 7/11/20
8:03:0 | | |-------------------|---------------|----------|-------------|-------------|--|------------------|-----------------------|-------|-----------------|-------|-------------|---------------|----------------|--------|-------|-----------------|----------------------|-------------------|--------------| | T07N
Tw
07N | | ge | | Tract | | Туре
МС | | - | Plots
25 | | _ | le Tree
78 | S | C
1 | uFt | T07
BdF
W | | W S13 T | MCC | | | | | % | | | | | Perce | ent N | et Bo | oard Fo | ot Vol | ume | | | Av | erage I | Log | Logs | | Spp | TC . | Gr
ad | Net
BdFt | Bd.
Def% | Ft. per Ac
Gross | ere
Net | Total
Net MBF | | g Sca
6-11 | | a.
6 17+ | Log
12-20 | g Len
21-30 | _ | 36-99 | Ln
Ft | Bd
Ft | CF/
Lf | Per
/Acre | | D | DO | CU | |
 - mariante de la companya comp | | | | | | | | | | | 7 | | 0.00 | 4.5 | | D | DO | 2S | 76 | 1.4 | 20,954 | 20,664 | 66 | | 6 | 65 | 29 | 1 | 5 | 16 | 78 | 37 | 287 | 1.86 | 72.0 | | D | DO | 38 | 20 | .3 | 5,381 | 5,364 | 17 | 1 | 100 | | | 2 | 3 | . 25 | 70 | 36 | 92 | 0.75 | 58.3 | | D | DO | 4S | 4 | | 896 | 896 | 3 | | 87 | 13 | | 70 | 30 | | | 18 | 30 | 0.53 | 29.5 | | D | Totals | | 69 | 1.1 | 27,232 | 26,924 | 86 | | 27 | 51 | 22 | 4 | 6 | 17 | 74 | 33 | 164 | 1.28 | 164.3 | | Н | DO | CU | | | | | | | 240004000.00000 | | | | | | | 5 | | 0.00 | 4.7 | | Н | DO | 2S | 58 | 2.6 | 7,368 | 7,180 | 23 | | | 84 | 16 | | | 39 | 61 | 36 | 249 | 1.56 | 28.9 | | Н | DO | 3S | 36 | .9 | 4,583 | 4,542 | 15 | 1 | 100 | | | | 2 | 42 | 56 | 35 | 85 | 0.73 | 53.1 | | Н | DO | 4S | 6 | 6.6 | 705 | 658 | 2 |] 1 | 100 | | | 65 | 35 | | | 19 | 27 | 0.45 | 24.1 | | Н | Totals | | 31 | 2.2 | 12,656 | 12,380 | 40 | | 42 | 49 | 9 | 3 | 3 | 38 | 56 | 31 | 112 | 0.95 | 110.8 | | Type ' | Fotals | | | 1.5 | 39,888 | 39,304 | 126 | | 32 | 50 | 18 | 4 | 5 | 24 | 68 | 32 | 143 | 1.15 | 275.1 | • | T 1 | SPCSTG | R | | | Species, | Sort G
Projec | rade - Boar
t: TTV | | oot V | olun | nes (T | Гуре) | | | | Ι | Page
Date
Sime | 7/11/20
9:49:0 | | |--------------------|--------|----------|-------------|-------------|---------------------|------------------|-----------------------|----------|----------------|--------|-------------|-----------------|----------------|--------|-------|----------|----------------------|-------------------|-----------| | T07N
Twi
07N | • | ge | | Tract | | Type
RW | | es
30 | Plot
46 | | | le Tree:
260 | s | C
1 | uFt | BdF
W | řt | W S12 T | RW | | | | | % | | | | | Per | cent N | let Bo | oard Fo | oot Vol | ume | | | Av | erage I | _og | Logs | | Spp | _ | Gr
ad | Net
BdFt | Bd.
Def% | Ft. per Ac
Gross | re
Net | Total
Net MBF | L
4-5 | og Sca
6-11 | | a.
5 17+ | Log | g Len
21-30 | - | 36-99 | Ln
Ft | Bd
Ft | CF/
Lf | Per /Acre | | Н | DO | CU | | | | | | | | | | | | | | 13 | | 0.00 | 15.1 | | Н | DO | 2S | 28 | 1.1 | 2,873 | 2,840 | 1 | : | 6 | 87 | 7 | | 2 | 37 | 61 | 36 | 213 | 1.59 | 13.4 | | Н | DO | 3S | 57 | 2.6 | 5,918 | 5,763 | 2 | | 99 | 1 | | | 0 | 64 | 36 | 35 | 79 | 0.68 | 73.1 | | Н | DO | 4S | 15 | 6.0 | 1,520 | 1,429 | 0 | 8 | 92 | | | 57 | 35 | 7 | | 20 | 25 | 0.44 | 57.2 | | H | Totals | | 54 | 2.7 | 10,311 | 10,032 | 3 | 1 | 72 | 25 | 2 | 8 | 6 | 48 | 38 | 28 | 63 | 0.69 | 158.7 | | D | DO | CU | | | | | | | | | | | | | | 9 | | 0.00 | 6.3 | | D | DO | 2S | 12 | 3.8 | 993 | 955 | 0 | | | 74 | 26 | 39 | 5 | 36 | 20 | 24 | 156 | 1.73 | 6.1 | | D | DO | 3S | 71 | 5.2 | 5,512 | 5,225 | 2 | | 98 | 2 | | 2 | 2 | 59 | 37 | 34 | 83 | 0.74 | 63.1 | | D | DO | 4S | 17 | 6.2 | 1,297 | 1,216 | 0 | 3 | 97 | | | 54 | 30 | 10 | 5 | 20 | 25 | 0.44 | 47.9 | | D | Totals | | 40 | 5.2 | 7,802 | 7,396 | 2 | 1 | 85 | 11 | 3 | 16 | 7 | 48 | 30 | 27 | 60 | 0.69 | 123.5 | | A | DO | CR | 100 | | 803 | 803 | 0 | | 100 | | | 31 | 15 | | 54 | 26 | 38 | 0.43 | 21.1 | | A | Totals | | 4 | | 803 | 803 | 0 | | 100 | | | 31 | 15 | | 54 | 26 | 38 | 0.43 | 21.1 | | NF | DO | CU | | | | | | | | | | | | | | 16 | | 0.00 | .2 | | NF | DO | 2S | 82 | 5.4 | 310 | 293 | 0 | | | 91 | 9 | 9 | | 37 | 53 | 33 | 216 | 1.65 | 1.4 | | NF | DO | 3S | 18 | | 64 | 64 | 0 | | 100 | | | | | 77 | 23 | 33 | 55 | 0.65 | 1.2 | | NF | Totals | | 2 | 4.4 | 374 | 357 | 0 | | 18 | 75 | 8 | 8 | | 44 | 48 | 32 | 131 | 1.14 | 2.7 | | Туре Т | `otals | | | 3,6 | 19,290 | 18,589 | 6 | 1 | 77 | 19 | 3 | 12 | 7 | 46 | 36 | 27 | 61 | 0.67 | 306.1 | | TC PSTATS | | | | | OJECT
PROJECT | STAT:
TT | | | | PAGE
DATE | 1
7/11/2012 | |--|--------------|--|---|--------------|---|--|---|---------------------|--|---|--| | TWP RGE | SC 7 | FRACT | | TYPE | | A | CRES | PLOTS | TREES | CuFt | BdFt | | 07N 06
07N 06W | 12 1
13 7 | 3456 | | TAKE
MCC | THR | | 232.50 | 142 | 847 | 1 | W | | | | | | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | PLO | OTS | TREES | | PER PLOT | 1 | TREES | | TREES | | • | | TOTAL | | 142 | 847 | | 6.0 | | | | | | | | CRUISE | | 72 | 467 | | 6.5 | | 17,287 | | 2.7 | | | | DBH COUNT | | | | | | | | | | | | | REFOREST | | | | | | | | | | | | | COUNT | | 64 | 347 | | 5.4 | | | | | | | | BLANKS | | 6 | | | | | | | | | | | 100 % | | | | | | | | | | | | | | | | | ST | CAND SUM | MARY | | | | | | | | SAM | | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | TRI | EES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUG FIR | | 225 | 26.5 | 15.0 | | | 32.6 | 4,436 | | 1,182 | 1,182 | | WHEMLOCK | | 213 | 39.8 | 13.2 | | | 37.7 | 4,032 | - | 1,133 | 1,133 | | R ALDER | | 23 | 7.7 | 9.3 | | | 3.6 | 260 | | 72 | 72 | | NOB FIR
TOTAL | | 6
467 | .3
74.4 | 20.4
13.0 | | | 0 .7
<i>74.6</i> | 105
<i>8,834</i> | | 27
2,413 | 27
2,413 | | CONFIDENCE 68 | | | | | UME WILL | BE WIT | HIN THE SAN | ∕IPLE ERR | .OR | | | | | .1 TIN | | | | | BE WIT | | | OR
OF TREES | REQ. | INF. POP | | CL 68.1
SD: 1.0 | .1 TIN | MES OU'
COEFF
VAR.% | T OF 100 T
S.E.% | HE VOL | SAMPL
LOW | E TREE | S - BF
HIGH | | | REQ.
10 | | | CL 68.1
SD: 1.0
DOUG FIR | .1 TIN | MES OU' COEFF VAR.% 131.4 | S.E.%
8.8 | HE VOL | SAMPL
LOW
216 | E TREE
AVG
236 | S - BF
HIGH
257 | | # OF TREES | | | | CL 68.1
SD: 1.0
DOUG FIR
WHEMLOCK | .1 TIN | COEFF
VAR.%
131.4
86.6 | S.E.%
8.8
5.9 | HE VOL | SAMPL
LOW
216
141 | E TREE
AVG
236
150 | S - BF
HIGH
257
159 | | # OF TREES | | | | CL 68.1
SD: 1,0
DOUG FIR
WHEMLOCK
R ALDER | .1 TIN | COEFF
VAR.%
131.4
86.6
28.4 | S.E.%
8.8
5.9
6.3 | HE VOL | SAMPL
LOW
216
141
41 | AVG
236
150
44 | S - BF
HIGH
257
159
47 | | # OF TREES | | | | CL 68.1
SD: 1.0
DOUG FIR
WHEMLOCK
R ALDER
NOB FIR | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0 | S.E.%
8.8
5.9
6.3
12.9 | HE VOL | SAMPL
LOW
216
141
41
286 | E TREE
AVG
236
150
44
328 | S - BF
HIGH
257
159
47
371 | | # OF TREES
5 | 10 | 1 | | CL 68.1
SD: 1,0
DOUG FIR
WHEMLOCK
R ALDER | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4 | S.E.%
8.8
5.9
6.3 | HE VOL | SAMPL
LOW
216
141
41
286
178 | AVG 236 150 44 328 189 | S - BF
HIGH
257
159
47 | | # OF TREES 5 | 10 | 7 | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF | S.E.%
8.8
5.9
6.3
12.9
5.9 | HE VOL | SAMPL
LOW
216
141
41
286
178
TREES | AVG 236 150 44 328 189 | S - BF
HIGH
257
159
47
371
200 | | # OF TREES
5
639
OF PLOTS | 10
160
REO. | 1 7 INF. POP. | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.% | S.E.% 8.8 5.9 6.3 12.9 5.9 | HE VOL | SAMPL
LOW
216
141
41
286
178
TREES/ | AVG 236 150 44 328 189 ACRE AVG | S - BF
HIGH
257
159
47
371
200
HIGH | | # OF TREES 5 | 10 | 1 7 INF. POP. | | CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2 | S.E.%
8.8
5.9
6.3
12.9
5.9
S.E.% | HE VOL | SAMPL
LOW 216 141 41 286 178 TREES/ LOW 22 | E TREE
AVG
236
150
44
328
189
ACRE
AVG
27 | S - BF
HIGH
257
159
47
371
200
HIGH
31 | | # OF TREES
5
639
OF PLOTS | 10
160
REO. | 1 7 INF. POP. | | CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5 | S.E.%
8.8
5.9
6.3
12.9
5.9
S.E.%
16.5
15.6 | HE VOL | SAMPL
LOW 216 141 41 286 178 TREES/ LOW 22 34 | E TREE
AVG
236
150
44
328
189
ACRE
AVG
27
40 | S - BF
HIGH
257
159
47
371
200
HIGH | | # OF TREES
5
639
OF PLOTS | 10
160
REO. | 1 7 INF. POP. | | CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7 | S.E.%
8.8
5.9
6.3
12.9
5.9
S.E.%
16.5
15.6
42.1 | HE VOL | SAMPL
LOW 216 141 41 286 178 TREES/ LOW 22 34 4 | AVG 236 150 44 328 189 ACRE AVG 27 40 8 | S - BF
HIGH
257
159
47
371
200
HIGH
31
46 | | # OF TREES
5
639
OF PLOTS |
10
160
REO. | 1 7 INF. POP. | | CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8 | S.E.% 8.8 5.9 6.3 12.9 5.9 8.E.% 16.5 15.6 42.1 58.5 | HE VOL | SAMPL LOW 216 141 41 286 178 TREES LOW 22 34 4 0 | AVG 236 150 44 328 189 ACRE AVG 27 40 8 0 | S - BF
HIGH
257
159
47
371
200
HIGH
31
46 | | # OF TREES 5 639 # OF PLOTS 5 | 10
160
REO.
10 | 7
INF. POP. | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1 | S.E.%
8.8
5.9
6.3
12.9
5.9
S.E.%
16.5
15.6
42.1 | HE VOL | SAMPL
LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 | AVG 236 150 44 328 189 ACRE AVG 27 40 8 0 74 | S - BF
HIGH
257
159
47
371
200
HIGH
31
46
14
83 | | # OF TREES 5 639 # OF PLOTS 5 | 10
160
REO.
10 | 7
INF. POP.
1 | | CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 CK 68.1 | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF | S.E.% 8.8 5.9 6.3 12.9 5.9 S.E.% 16.5 15.6 42.1 58.5 11.5 | HE VOL | SAMPL LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 BASAL | ACRE AVG 27 40 8 0 74 | S - BF
HIGH
257
159
47
371
200
HIGH
31
46
14
83 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS | 10
160
REO.
10 | 7
INF. POP.
1 | | CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 CK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.% | S.E.% 8.8 5.9 6.3 12.9 5.9 S.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% | HE VOL | SAMPL LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 BASAL LOW | ACRE AVG 27 40 8 0 74 AVG | S - BF HIGH 257 159 47 371 200 HIGH 31 46 1 83 ACRE HIGH | | # OF TREES 5 639 # OF PLOTS 5 | 10
160
REO.
10 | 7
INF. POP.
1 | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR OB FIR TOTAL | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.% | S.E.% 8.8 5.9 6.3 12.9 5.9 S.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 | HE VOL | SAMPL LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 BASAL LOW 27 | ACRE AVG 27 40 8 0 74 AVG 33 | S - BF
HIGH
257
159
47
371
200
HIGH
31
46
1
83
ACRE
HIGH
38 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS | 10
160
REO.
10 | 7
INF. POP.
1 | | CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.%
198.8
173.9 | S.E.% 8.8 5.9 6.3 12.9 5.9 S.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 14.6 | HE VOL | SAMPL LOW 216 141 41 286 178 TREES LOW 22 34 4 0 66 BASAL LOW 27 32 | ACRE AVG 27 40 8 0 74 AVG | S - BF HIGH 257 159 47 371 200 HIGH 31 46 1 83 ACRE HIGH 38 43 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS | 10
160
REO.
10 | 7
INF. POP.
1 | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR HEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.%
198.8
173.9
472.5 | S.E.% 8.8 5.9 6.3 12.9 5.9 8.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 14.6 39.6 | HE VOL | SAMPL LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 BASAL LOW 27 | AVG 328 AVG 27 40 8 0 74 AVG 33 38 | S - BF
HIGH
257
159
47
371
200
HIGH
31
46
1
83
ACRE
HIGH
38 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS | 10
160
REO.
10 | 7
INF. POP.
1 | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.%
198.8
173.9 | S.E.% 8.8 5.9 6.3 12.9 5.9 S.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 14.6 | HE VOL | SAMPL LOW 216 141 41 286 178 TREES LOW 22 34 4 0 66 BASAL LOW 27 32 2 | AVG 328 150 44 328 189 ACRE AVG 27 40 8 0 74 ANG 33 38 4 | S - BF
HIGH 257 159 47 371 200 HIGH 31 46 1 83 ACRE HIGH 38 43 5 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS | 10
160
REO.
10 | 7
INF. POP.
1
8
INF. POP. | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.%
198.8
173.9
472.5
679.9 | S.E.% 8.8 5.9 6.3 12.9 5.9 8.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 14.6 39.6 57.0 | HE VOL | SAMPL LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 BASAL LOW 27 32 2 0 | ACRE AVG 27 40 8 0 74 AVG 33 38 4 1 75 | S - BF HIGH 257 159 47 371 200 HIGH 31 46 14 83 ACRE HIGH 38 43 5 1 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS 5 | 10 160 REO. 10 188 REO. 10 | 7
INF. POP.
1
8
INF. POP.
1 | | CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1,0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.%
198.8
173.9
472.5
679.9 | S.E.% 8.8 5.9 6.3 12.9 5.9 8.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 14.6 39.6 57.0 | THE VOL | SAMPL LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 BASAL LOW 27 32 2 0 67 | ACRE AVG 27 40 8 0 74 AVG 33 38 4 1 75 | S - BF HIGH 257 159 47 371 200 HIGH 31 46 14 83 ACRE HIGH 38 43 5 1 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS 5 | 10 160 REO. 10 188 REO. 10 | 7
INF. POP.
1
INF. POP.
7 | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.%
198.8
173.9
472.5
679.9
126.9 | S.E.% 8.8 5.9 6.3 12.9 5.9 S.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 14.6 39.6 57.0 10.6 | THE VOL | SAMPL LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 BASAL LOW 27 32 2 0 67 NET BF | ACRE AVG 27 40 8 0 74 AVG 33 38 4 1 75 VACRE | S - BF
HIGH
257
159
47
371
200
HIGH
31
46
1
83
ACRE
HIGH
38
43
5
1
83 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS 5 | 10 160 REO. 10 188 REO. 10 161 REQ. | 7
INF. POP.
1
INF. POP.
7 | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.%
198.8
173.9
472.5
679.9
126.9
COEFF
VAR.% | S.E.% 8.8 5.9 6.3 12.9 5.9 S.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 14.6 39.6 57.0 10.6 | THE VOL | SAMPL LOW 216 141 41 286 178 TREES LOW 22 34 4 0 66 BASAL LOW 27 32 2 0 67 NET BF | AVG 328 150 44 328 189 ACRE AVG 27 40 8 0 74 AVG 33 38 4 1 75 VACRE AVG | S - BF HIGH 257 159 47 371 200 HIGH 31 46 1 83 ACRE HIGH 38 43 5 1 83 HIGH | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS 5 | 10 160 REO. 10 188 REO. 10 161 REQ. | 7
INF. POP.
1
INF. POP.
7 | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.%
198.8
173.9
472.5
679.9
126.9
COEFF
VAR.% | S.E.% 8.8 5.9 6.3 12.9 5.9 S.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 14.6 39.6 57.0 10.6 | THE VOL | SAMPL LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 BASAL LOW 27 32 2 0 67 NET BF LOW 3,483 | AVG 33 34 AVG 33 38 4 1 75 ACRE AVG 33 38 4 1 75 ACRE AVG 4351 | S - BF HIGH 257 159 47 371 200 HIGH 31 46 11 83 ACRE HIGH 38 43 5 1 83 HIGH 5,218 4,505 362 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS 5 | 10 160 REO. 10 188 REO. 10 161 REQ. | 7
INF. POP.
1
INF. POP.
7 | | CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1
SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL CL 68.1 SD: 1.0 DOUG FIR WHEMLOCK R ALDER NOB FIR TOTAL | .1 TIM | COEFF
VAR.%
131.4
86.6
28.4
29.0
126.5
COEFF
VAR.%
196.2
186.5
501.7
697.8
137.1
COEFF
VAR.%
198.8
173.9
472.5
679.9
126.9
COEFF
VAR.% | S.E.% 8.8 5.9 6.3 12.9 5.9 S.E.% 16.5 15.6 42.1 58.5 11.5 S.E.% 16.7 14.6 39.6 57.0 10.6 | THE VOL | SAMPL LOW 216 141 41 286 178 TREES/ LOW 22 34 4 0 66 BASAL LOW 27 32 2 0 67 NET BF LOW 3,483 3,265 | AVG 33 AVG 34 AVG 33 38 4 1 75 ACRE AVG 33 38 4 1 75 ACRE AVG 33 38 4 1 75 ACRE AVG 33 38 4 1 75 | S - BF HIGH 257 159 47 371 200 HIGH 31 46 1 83 ACRE HIGH 38 43 5 1 83 HIGH 5,218 4,505 | | # OF TREES 5 639 # OF PLOTS 5 751 # OF PLOTS 5 | 10 160 REO. 10 188 REO. 10 161 REQ. | 7 | | TC TSTAT | S | | | | ST
PROJE | CATIS'
CT | FICS
TTW | | | PAGE
DATE 7 | 1
/11/2012 | |--|-------|----------------|--------------------------|--------------|-------------|--------------|-----------------|---------------|-----------------|---------------------------------------|---------------| | TWP R | RGE | SECT TE | RACT | | TYPE | | CRES | PLOTS | TREES | CuFt | BdFt | | |)6W | | 456 | | 0PC1 | | 129.50 | 46 | 461 | 1 | W | | anne de la contracta con | | | | | | | | | CONTRACTOR NO. | · · · · · · · · · · · · · · · · · · · | | | | | | | | TREES | | ESTIMATED TOTAL | | ERCENT
AMPLE | | | | | | PLOTS | TREES | | PER PLOT | 7 | TREES | | REES | | | | TOTAL | | 46 | 461 | | 10.0 | | | _ | | | | | CRUISE | | 25 | 266 | | 10.6 | | 25,203 | | 1.1 | | | | DBH CC | | | | | | | , | | | | | | REFORE | EST | | | | | | | | | | | | COUNT | | 21 | 172 | | 8.2 | | | | | | | | BLANKS | S | | | | | | | | | | | | 100 % | | | | | | | | | | | | | | | | | STA | ND SUM | MARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | HEMLE | AV | 74 | 48.8 | 15.3 | 54 | | 62.6 | 6,867 | 6,705 | 2,025 | 2,02 | | DOUGLI | EAV | 76 | 44.2 | 15.6 | 53 | | 58.7 | 5,951 | 5,627 | 1,743 | 1,74 | | WHEML | | 54 | 49.2 | 12.1 | 39 | | 39.6 | 3,518 | 3,402 | 1,024 | 1,02 | | DOUG F | | 39 | 29.9 | 12.0 | 37 | | 23.5 | 1,935 | 1,845 | 556 | 55 | | R ALDE | | 10 | 13.8 | 9.3 | 24 | | 6.5 | 466 | 466 | 128 | 12 | | ALDRLE | EAV | 3 | 6.0 | 11.6 | 41 | | 4.3 | 358 | 358 | 121 | 12 | | SNAG | | 4 | 1.2 | 16.2 | 39 | | 1.7 | 155 | 1.5.5 | 40 | | | NFIRLE | | 2 2 | .6 | 20.4 | 72 | | 0 1.3 | 175 | 175 | 48 | 4: | | NOB FIR | | 2 | .6
.4 | 20.4
19.7 | 83
41 | | 0 1.3
.9 | 188
120 | 171
114 | 48
28 | 4: | | TOTAL | 1 V | 266 | .4
194.6 | 19.7 | 41 | | .9
200.4 | 120
19,576 | 18,863 | 5,722 | 5,722 | | CL: 68 | 3.1 % | COEFF | | | SAMPL | E TREE | S - BF | # | OF TREES | REQ. | INF. POP | | | .0 | VAR.% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | | | HEMLEA | | 68.9 | 8.0 | | 160 | 174 | 188 | | | | | | DOUGLE | | 224.4 | 25.7 | | 135 | 182 | 229 | | • | | | | WHEML
DOUG F | | 82.4
53.3 | 11.2
8.5 | | 88
69 | 99
76 | 110
82 | | | | | | R ALDEI | | 28.4 | 10.0 | | 37 | 41 | 45 | | | | | | ALDRLE | | .0 | .0 | | 60 | 60 | 60 | | | | | | SNAG | | •• | | | - * | | •• | | | | | | NFIRLE | ΑV | 54.1 | 50.6 | | 168 | 340 | 512 | | | | | | NOB FIR | | 29.2 | 27.3 | | 229 | 315 | 401 | | | | | | CEDLEA | V | 135.0 | 126.4 | | | 875 | 1,981 | | | | | | TOTAL | | 175.6 | 10.8 | | 130 | 146 | 161 | | 1,231 | 308 | 1. | | | 3.1 % | COEFF | | | TREES | | | # | OF PLOTS | REQ. | INF. POF | | SD: 1 | | VAR.% | S.E.% | Le | OW | AVG | HIGH | | 5 | 10 | | | HEMLEA | | 78.2 | 11.5 | | 43 | 49 | 54 | | | | | | DOUGLE | | 82.7 | 12.2 | | 39
40 | 44 | 50 | | | | | | WHEML
DOUG F | | 120.9
132.0 | 17.8
19.4 | • | 40
24 | 49
30 | 58
36 | | | | | | R ALDEI | | 276.5 | 19. 4
40.7 | | 8 | 30
14 | 36
19 | | | | | | ALDRLE | | 410.4 | 60.5 | | 2 | 6 | 10 | | | | | | SNAG | | 468.3 | 69.0 | | 0 | 1 | 2 | • | | | | | NFIRLE/ | ΑV | 393.3 | 57.9 | | 0 | 1 | 1 | | | | | | NOB FIR | | 393.3 | 57.9 | | 0 | 1 | 1 | | | | | | CEDLEA | V | 588.2 | 86.7 | | 0 | 0 | 1 | | | | | | TOTAL | | 40.5 | 6.0 | | 183 | 195 | 206 | | 66 | 16 | | | CL: 68 | .1 % | COEFF | | | BASAL | AREA/A | CRE | # | OF PLOTS | REQ. | INF. POP | | SD: 1 | .0 | VAR.% | S.E.% | Lo | OW | AVG | HIGH | | 5 | 10 | | | HEMLEA | | 78.1 | 11.5 | | 55 | 63 | 70 | | | | | | DOLIGI E | | 79.5 | 11.7 | | 52 | 50 | 66 | | | | | DOUGLEAV 79.5 11.7 52 59 66 | TC TSTATS | | | S
PROJ | TATIS | TICS
TTW | | | PAGE
DATE | 2
7/11/2012 | |------------|----------|-------|-----------|---------|-------------|-------|------------|--------------|----------------| | TWP RGE | SECT TRA | .CT | TYPE | | CRES | PLOTS | TREES | CuFt | BdFt | | 07N 06W | 12 134 | 56 | 0PC1 | | 129.50 | 46 | 461 | 1 | W | | CL: 68.1% | COEFF | | BASA | L AREA/ | ACRE | | # OF PLC | OTS REO | INF. PC | | SD: 1.0 | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | WHEMLOCK | 115.5 | 17.0 | 33 | 40 | 46 | | | | | | DOUG FIR | 124.8 | 18.4 | 19 | 23 | 28 | | | | | | R ALDER | 259.0 | 38.2 | 4 | 7 | 9 | | | | | | ALDRLEAV | 410.4 | 60.5 | 2 | 4 | 7 | | | | | | SNAG | 407.6 | 60.0 | 1 | 2 | 3 | | | | | | NFIRLEAV | 382.8 | 56.4 | 1 | 1 | 2 | | | | | | NOB FIR | 382.8 | 56.4 | 1 | 1 | 2 | | | | | | CEDLEAV | 474.2 | 69.9 | 0 | 1 | 1 | | | | | | TOTAL | 29.3 | 4.3 | 192 | 200 | 209 | | 34 | 9 | • | | CL: 68.1 % | COEFF | | NET B | F/ACRE | | | # OF PLOTS | REQ. | INF. POP. | | SD: 1.0 | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 1 | | HEMLEAV | 84.6 | 12.5 | 5,869 | 6,705 | 7,541 | | | | | | DOUGLEAV | 79.2 | 11.7 | 4,971 | 5,627 | 6,284 | | | | | | WHEMLOCK | 138.5 | 20.4 | 2,708 | 3,402 | 4,097 | | | | | | DOUG FIR | 128.6 | 18.9 | 1,495 | 1,845 | 2,194 | | | | | | R ALDER | 255.9 | 37.7 | 290 | 466 | 641 | | | | | | ALDRLEAV | 410.4 | 60.5 | 141 | 358 | 574 | | | | | | SNAG | | | | | | | | | | | NFIRLEAV | 384.6 | 56.7 | 76 | 175 | 274 | | | | | | NOB FIR | 383.6 | 56.5 | 74 | 171 | 268 | i | | | | | CEDLEAV | 597.9 | 88.1 | 14 | 114 | 214 | | | | | | TOTAL | 37.9 | 5.6 | 17,809 | 18,863 | 19,916 | | <i>57</i> | 14 | | | TC TSTATS | 5 | | | | ST
PROJE | CATIST | TCS
TTW | | | PAGE
DATE 7 | 1
7/11/2012 | |--
--|--|---|-------------|--|--|--|-------|-------------------------------------|--|---------------------------------------| | TWP RO | GE | SECT TI | RACT | | TYPE | AC | RES | PLOTS | TREES | CuFt | BdFt | | 07N 00 | 6W | 12 13 | 456 | | TAKE | | 129.50 | 46 | 163 | 1 | W | | · · · · · · · · · · · · · · · · · · · | | A STATE OF THE STA | | | | I | ESTIMATED | P | PERCENT | | | | | | | | | TREES | - | TOTAL | S | AMPLE | | | | | | PLOTS | TREES | | PER PLOT | , | TREES | T | REES | | | | TOTAL | | 46 | 163 | | 3.5 | | | | | | | | CRUISE | | 25 | 105 | | 4.2 | | 12,107 | | .9 | | | | DBH COU | UNT | | | | | | | | | | | | REFORES | ST | | | | | | | | | | | | COUNT | | 16 | 48 | | 3.0 | | | | | | | | BLANKS | | 5 | | | | | | | | | | | 100 % | | | | | | | | | | | | | | | , | | STA | ND SUM | MARY | | | | 100 Television - Te | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | WHEMLO | OCK | 54 | 49.2 | 12.1 | 39 | ······································ | 39.6 | 3,518 | 3,402 | 1,024 | 1,024 | | DOUG FII | R | 39 | 29.9 | 12.0 | 37 | | 23.5 | 1,935 | 1,845 | 556 | 556 | | R ALDER | ? | 10 | 13.8 | 9.3 | 24 | | 6.5 | 466 | 466 | 128 | 128 | | NOB FIR | | 2 | .6 | 20.4 | 83 | 0 | 1.3 | 188 | 171 | 48 | 48 | | TOTAL | | 105 | 93.5 | 11.8 | 37 | | 70.9 | 6,106 | 5,884 | 1,756 | 1,756 | | 6 | 68.1 | E LIMITS OF
TIMES OUT | | | | | | | OFTRES | C DEO | INIE DOD | | | 68.1 | | | VOLUME | | E TREES | | | OF TREES | S REQ.
10 | | | CL: 68. | 68.1
.1 %
0 | COEFF
VAR.%
82.4 | S.E.%
11.2 | VOLUME | SAMPL
OW
88 | E TREES | 6 - BF
HIGH
110 | | | | | | CL: 68. SD: 1.0 WHEMLO | 68.1
.1 %
0
OCK
R | COEFF
VAR.%
82.4
53.3 | S.E.%
11.2
8.5 | VOLUME | SAMPL
OW
88
69 | E TREES
AVG
99
76 | S - BF
HIGH
110
82 | | | | INF. POP. | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER | 68.1
.1 %
0
OCK
R | COEFF
VAR.%
82.4
53.3
28.4 | S.E.%
11.2
8.5
10.0 | VOLUME | SAMPL
OW
88
69
37 | E TREES
AVG
99
76
41 | S - BF
HIGH
110
82
45 | | | | | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR | 68.1
.1 %
0
OCK
R | COEFF
VAR.%
82.4
53.3
28.4
29.2 | S.E.%
11.2
8.5
10.0
27.3 | VOLUME | SAMPL
OW
88
69
37
229 | E TREES
AVG
99
76
41
315 | S - BF
HIGH
110
82
45
401 | | 5 | 10 | 1 | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL | 68.1
.1 %
0
OCK
R | COEFF
VAR.%
82.4
53.3
28.4
29.2
82.3 | S.E.%
11.2
8.5
10.0 | VOLUME | SAMPL
OW
88
69
37 | E TREES
AVG
99
76
41 | S - BF
HIGH
110
82
45 | # | 5
271 | 10
68 | 1 | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. | 68.1
.1 %
0
OCK
R | COEFF
VAR.%
82.4
53.3
28.4
29.2
82.3
COEFF | S.E.% 11.2 8.5 10.0 27.3 8.1 | VOLUME
L | SAMPL
OW
88
69
37
229
82
TREES | AVG 99 76 41 315 89 | S - BF
HIGH
110
82
45
401
97 | # | 5
271
OF PLOTS | 68 S REQ. | 3
INF. POP. | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 | 68.1
.1 %
0
DCK
R | COEFF
VAR.%
82.4
53.3
28.4
29.2
82.3
COEFF
VAR.% | S.E.% S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.%
| VOLUME
L | SAMPL
OW
88
69
37
229
82
TREES | AVG 99 76 41 315 89 ACRE AVG | S - BF
HIGH
110
82
45
401
97 | # | 5
271 | 10
68 | 3
INF. POP. | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO | 68.1
.1 %
0
OCK
R
8 | COEFF
VAR.%
82.4
53.3
28.4
29.2
82.3
COEFF
VAR.% | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 | VOLUME
L | SAMPL
OW
88
69
37
229
82
TREES
OW
40 | AVG 99 76 41 315 89 ACRE AVG 49 | S - BF
HIGH
110
82
45
401
97
HIGH | # | 5
271
OF PLOTS | 68 S REQ. | 3
INF. POP. | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR | 0 DCK R 0 DCK R | COEFF
VAR.%
82.4
53.3
28.4
29.2
82.3
COEFF
VAR.%
120.9
132.0 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 | VOLUME
L | SAMPLOW 88 69 37 229 82 TREES OW 40 24 | E TREES AVG 99 76 41 315 89 ACRE AVG 49 30 | S - BF
HIGH
110
82
45
401
97
HIGH
58
36 | # | 5
271
OF PLOTS | 68 S REQ. | 3
INF. POP. | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER | 0 DCK R 0 DCK R | COEFF
VAR.%
82.4
53.3
28.4
29.2
82.3
COEFF
VAR.%
120.9
132.0
276.5 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 | VOLUME
L | SAMPL
OW
88
69
37
229
82
TREES
OW
40 | AVG 99 76 41 315 89 ACRE AVG 49 | S - BF
HIGH
110
82
45
401
97
HIGH | # | 5
271
OF PLOTS | 68 S REQ. | | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIIR R ALDER NOB FIR | 0 DCK R 0 DCK R | COEFF
VAR.%
82.4
53.3
28.4
29.2
82.3
COEFF
VAR.%
120.9
132.0 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 | VOLUME
L | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 | AVG 99 76 41 315 89 (ACRE AVG 49 30 14 | S - BF
HIGH
110
82
45
401
97
HIGH
58
36
19 | # | 5
271
OF PLOTS | 68 S REQ. | 3 INF. POP. | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER | 68.1
.1 %
0
OCK
R
8 | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 | VOLUME
L | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 | AVG 99 76 41 315 89 ACRE AVG 49 30 14 1 93 | S - BF
HIGH
110
82
45
401
97
HIGH
58
36
19
1
103 | # | 5
271
6 OF PLOTS
5 | 68
S REQ.
10 | 3 INF. POP. 1 | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL | 68.1
.1 %
0
OCK
R
&
.1 %
0
OCK | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 | L. | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 | AVG 99 76 41 315 89 ACRE AVG 49 30 14 | S - BF
HIGH
110
82
45
401
97
HIGH
58
36
19
1
103 | # | 5
271
F OF PLOTS
5 | 68
S REQ.
10 | 3
INF. POP.
1 | | CL: 68. SD: 1.4 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.4 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. | 0 OCK R & O | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 | L. | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL | AVG 99 76 41 315 89 ACRE AVG 49 30 14 1 93 AREA/A | S - BF
HIGH
110
82
45
401
97
HIGH
58
36
19
1
103
CRE | # | 5 271 OF PLOTS 5 197 OF PLOTS | 68 S REQ. 10 49 S REQ. | 3
INF. POP.
1 | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR OBLER NOB FIR TOTAL CL: 68. | 68.1
.1 %
0
OCK
R
&
.1 %
0
OCK
R | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF VAR.% 115.5 124.8 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 S.E.% 17.0 18.4 | L. | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL OW 33 19 | AVG AVG AVG AVG AVG AVG AVG AVG | S - BF
HIGH
110
82
45
401
97
HIGH
58
36
19
1
103
CRE
HIGH
46
28 | # | 5 271 OF PLOTS 5 197 OF PLOTS | 68 S REQ. 10 49 S REQ. | 3
INF. POP.
1 | | CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER | 68.1
.1 %
0
OCK
R
&
.1 %
0
OCK
R | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF VAR.% 115.5 124.8 259.0 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 S.E.% 17.0 18.4 38.2 | L. | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL OW 33 19 4 | AVG AVG 41 315 89 ACRE AVG 49 30 14 1 93 AREA/A AVG 40 23 7 | S - BF
HIGH
110
82
45
401
97
HIGH
58
36
19
1
103
CRE
HIGH
46
28
9 | # | 5 271 OF PLOTS 5 197 OF PLOTS | 68 S REQ. 10 49 S REQ. | 3
INF. POP.
1 | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. | 68.1
.1 %
0
OCK
R
&
.1 %
0
OCK
R | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF VAR.% 115.5 124.8 259.0 382.8 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 S.E.% 17.0 18.4 38.2 56.4 | L. | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL OW 33 19 4 1 | AVG AVG 99 76 41 315 89 ACRE AVG 49 30 14 1 93 AREA/A AVG 40 23 7 1 | S - BF
HIGH
110
82
45
401
97
HIGH
58
36
19
1
103
CRE
HIGH
46
28
9 | # | 5 271 OF PLOTS 5 197 OF PLOTS 5 | 68 S REQ. 10 49 S REQ. 10 | 3
INF. POP.
1
2
INF. POP. | | CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. | 68.1
.1 %
0
OCK
R
&
.1 %
0
OCK
R | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF VAR.% 115.5 124.8 259.0 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 S.E.% 17.0 18.4 38.2 | L. | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL OW 33 19 4 | AVG AVG 41 315 89 ACRE AVG 49 30 14 1 93 AREA/A AVG 40 23 7 | S - BF
HIGH
110
82
45
401
97
HIGH
58
36
19
1
103
CRE
HIGH
46
28
9 | # | 5 271 OF PLOTS 5 197 OF PLOTS | 68 S REQ. 10 49 S REQ. | 3
INF. POP.
1 | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. | 68.1
.1 %
0
OCK
R
&
.1 %
0
OCK
R
& | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF VAR.% 115.5 124.8 259.0 382.8 62.3 COEFF | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 S.E.% 17.0 18.4 38.2 56.4 9.2 | L | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL OW 33 19 4 1 64 NET BE | AVG AVG 49 30 14 1 93 AREA/A AVG 40 23 7 1 7/ACRE | S - BF HIGH 110 82 45 401 97 HIGH 58 36 19 1 103 CRE HIGH 46 28 9 2 77 | # | 5 271 OF PLOTS 5 197 OF PLOTS 5 | 68
S REQ.
10
49
S REQ.
10 | 3 INF. POP. 1 INF. POP. 1 | | CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 CL: 68. SD: 1.0 CL: 68. | 0 OCK R & O OCK R & O OCK R & C | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF VAR.% 115.5 124.8 259.0 382.8 62.3 COEFF VAR.% | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 S.E.% 17.0 18.4 38.2 56.4 9.2 S.E.% | L | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL OW 33 19 4 1 64 NET BE | AVG 49 30 14 1 93 AREA/A AVG 40 23 7 1 7/ACRE AVG | S - BF HIGH 110 82 45 401 97 HIGH 58 36 19 1 103 CRE HIGH 46 28 9 2 77 HIGH | # | 5 271 OF PLOTS 5 197 OF PLOTS 5 | 68
S REQ.
10
49
S REQ.
10 | 3
INF. POP.
1
INF. POP. | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. | 0 OCK R & O OCK R & O OCK R & C | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF VAR.% 115.5 124.8 259.0 382.8 62.3 COEFF VAR.% 138.5 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 S.E.% 17.0 18.4 38.2 56.4 9.2 S.E.% 20.4 | L | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL OW 33 19 4 1 64 NET BEOW 2,708 | AVG 49 AVG 49 30 14 1 93 AREA/A AVG 40 23 7 1 7/ACRE AVG 3,402 | S - BF HIGH 110 82 45 401 97 HIGH 58 36 19 1 103 CRE HIGH 46 28 9 2 77 HIGH 4,097 | # | 5 271 OF PLOTS 5 197 OF PLOTS 5 | 68 S REQ. 10 49 S REQ. 10 39 S REQ. | 3 INF. POP. 1 INF. POP. 1 | | CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLO DOUG FIR TOTAL CL: 68. | 0 OCK R & COCK | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF VAR.% 115.5 124.8 259.0 382.8 62.3 COEFF VAR.% 138.5 128.6 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 S.E.% 17.0 18.4 38.2 56.4 9.2 S.E.% 20.4 18.9 | L | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL OW 33 19 4 1 64 NET BEOW 2,708 1,495 | AVG 49 30 14 1 93 AREA/A AVG 40 23 7 1 7/ACRE AVG 3,402 1,845 | S
- BF HIGH 110 82 45 401 97 HIGH 58 36 19 1 103 CRE HIGH 46 28 9 2 77 HIGH 4,097 2,194 | # | 5 271 OF PLOTS 5 197 OF PLOTS 5 | 68 S REQ. 10 49 S REQ. 10 39 S REQ. | 33 INF. POP. 1 INF. POP. 1 | | CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 WHEMLC DOUG FIR R ALDER NOB FIR TOTAL CL: 68. SD: 1.0 CL: 68. | 0 OCK R & COCK | COEFF VAR.% 82.4 53.3 28.4 29.2 82.3 COEFF VAR.% 120.9 132.0 276.5 393.3 70.2 COEFF VAR.% 115.5 124.8 259.0 382.8 62.3 COEFF VAR.% 138.5 | S.E.% 11.2 8.5 10.0 27.3 8.1 S.E.% 17.8 19.4 40.7 57.9 10.3 S.E.% 17.0 18.4 38.2 56.4 9.2 S.E.% 20.4 | L | SAMPLOW 88 69 37 229 82 TREES OW 40 24 8 0 84 BASAL OW 33 19 4 1 64 NET BEOW 2,708 | AVG 49 30 14 1 93 AREA/A AVG 40 23 7 1 7/ACRE AVG 3,402 | S - BF HIGH 110 82 45 401 97 HIGH 58 36 19 1 103 CRE HIGH 46 28 9 2 77 HIGH 4,097 | # | 5 271 OF PLOTS 5 197 OF PLOTS 5 | 68 S REQ. 10 49 S REQ. 10 39 S REQ. | 33 INF. POP. 1 INF. POP. 1 | | TC TSTATS | | | | ST
PROJE | CATIS' | TICS
TTW | | | PAGE
DATE 7 | 1/11/2012 | |--|-------------------------------|--|------|-------------|----------|--------------------|---------------------------------------|--|----------------|------------| | TWP RGE | SECT TR | RACT | | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 07N 06W | 13 2 | | | 0PC2 | | 99.50 | 25 | 178 | 1 | W | | | | ************************************** | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | PLOTS | TREES | | PER PLOT | | TREES | 7 | ΓREES | | | | TOTAL | 25 | 178 | | 7.1 | | | | | | | | CRUISE
DBH COUNT
REFOREST
COUNT | 11
14 | 79
99 | | 7.2
7.1 | | 12,423 | | .6 | | | | BLANKS
100 % | | | | | | | | | | | | | | | STA | ND SUM | MARY | V NAME OF STREET | | and the second s | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUGLEAV | 41 | 42.6 | 22.0 | 87 | - | 112.9 | 20,288 | 20,053 | 5,015 | 5,015 | | HEMLEAV | 13 | 33.8 | 16.0 | 63 | | 47.1 | 8,224 | 8,130 | 2,014 | 2,014 | | DOUG FIR | 15 | 20.8 | 18.9 | 88 | | 40.3 | 6,949 | 6,877 | 1,812 | 1,812 | | WHEMLOCK | 9 | 26.7 | 15.2 | 51 | | 33.6 | 4,405 | 4,221 | 1,201 | 1,201 | | SNAG | 1 | 1.0 | 32.0 | 12 | | 5.4 | | | | | | TOTAL | 79 | 124.9 | 18.7 | 73 | | 239.3 | 39,867 | <i>39,281</i> | 10,043 | 10,043 | | | E LIMITS OF TIMES OUT (COEFF | | | SAMPL | | | | OF TREES | DEO | INF. POP. | | SD: 1.0 | VAR.% | S.E.% | ī | SAMPL
OW | AVG | HIGH | † | FOR TREES | 10 | 11NF. POP. | | DOUGLEAV | 37.2 | 5.8 | | 521 | 553 | 585 | | | 10 | 1.3 | | HEMLEAV | 68.0 | 19.6 | | 278 | 346 | 414 | | | | | | DOUG FIR | 36.7 | 9.8 | | 323 | 358 | 393 | | | | | | WHEMLOCK | 57.8 | 20.4 | | 174 | 219 | 264 | | | | | | SNAG | | | | | | | | | | | | TOTAL | 52.5 | 5.9 | | 411 | 437 | 463 | | 110 | 27 | 12 | | CL: 68.1 % | COEFF | | | TREES | ACRE | | # | OF PLOTS | REQ. | INF. POP. | | SD: 1.0 | VAR.% | S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | DOUGLEAV | 48.9 | 10.0 | | 38 | 43 | 47 | | | | | | HEMLEAV | 86.6 | 17.7 | | 28 | 34 | 40 | | | | | | DOUG FIR | 120.1 | 24.5 | | 16 | 21 | 26 | | | | | | WHEMLOCK | 97.3 | 19.9 | | 21 | 27 | 32 | | | | | | SNAG | 233.9 | 47.7 | | 1 | 1 | 1 | | | | _ | | TOTAL | 37.7 | 7.7 | | 115 | 125 | 134 | | 59 | 15 | 7 | | CL: 68.1 % | COEFF | | | BASAL | | | # | OF PLOTS | REQ. | INF. POP. | | SD: 1.0 | VAR.% | S.E.% | L | OW | AVG | HIGH | · · · · · · · · · · · · · · · · · · · | 5 | 10 | 15 | | DOUGLEAV | 43.7 | 8.9 | | 103 | 113 | 123 | | | | | | HEMLEAV | 92.2 | 18.8 | | 38 | 47 | 56 | | | | | | DOUG FIR | 115.4 | 23.5 | | 31 | 40 | 50 | | | | | | WHEMLOCK | 95.7
223.0 | 19.5 | | 27 | 34 | 40 | | | | | | SNAG
TOTA L | 233.9 | 47.7
5.0 | | 3 | 5
220 | 8
251 | | 25 | 4 | 3 | | | 24.4
COEFF | 5.0 | | 227 | 239 | 251 | | 25 | 6 | | | CL: 68.1 % | | | | NET BF | | | # | OF PLOTS | | INF. POP. | | SD: 1.0 | VAR.% | S.E.% | | OW | AVG | HIGH | | 5 | 10 | 15 | | DOUGLEAV | 44.6 | 9.1 | | | 20,053 | 21,875 | | | | | | HEMLEAV | 109.4 | 22.3 | | 6,316 | 8,130 | 9,943 | | | | | | DOUG FIR | 118.6 | 24.2 | | 5,214 | 6,877 | 8,539 | | | | | | WHEMLOCK | 102.4 | 20.9 | | 3,340 | 4,221 | 5,103 | | | | | | SNAG
TOTAL | 24.4 | 5.0 | 3: | 7,328 | 39,281 | 41,233 | | 25 | 6 | 3 | | TC TST | TATS | | | | ST
PROJEC | ATIST | TICS
TTW | | | PAGE
DATE | 1
7/11/2012 | |---|--|--|--|--------------------|---|---|---|----------------|--|---|--| | TWP | RGE | SECT 7 | TRACT | | TYPE | AC | CRES | PLOTS | TREES | CuFt | BdFt | | 07N | 06W | 13 2 | <u> </u> | | TAKE | Machine Company | 99.50 | 25 | 55 | 1 | W | | | | | VI. 0.11/2 | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | **** | | | | | PLOTS | TREES | F | PER PLOT | | TREES | Т | REES | | | | TOTA | AL. | 25 | 55 | | 2.2 | | | | W-1/12 | | | | CRUI
DBH | ISE
COUNT | 11 | 24 | | 2.2 | | 4,724 | | .5 | | | | COUR
BLAN |
NKS | 13
1 | 31 | | 2.4 | | | | | | | | 100 % | ó | | | STA N | ND SUMI | MADV | | | | erin. | 314.034 | | | | CANTE | TDEEC | | | | DAGAI | CDOSS | NIDT | GROSS | S NET | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | CF/AC | | | DOU | G FIR | 15 | 20.8 | 18.9 | 88 | | 40.3 | 6,949 | 6,877 | 1,812 | 1,812 | | WILE | MLOCK | 9 | 26.7 | 15.2 | 51 | | 33.6 | 4,405 | 4,221 | 1,201 | 1,201 | | WILL | | | | | | | | | | | | | TOTA | AL | 24
E LIMITS O | 47.5
F THE SAMPI | <i>16.9</i>
Æ | 67 | | 73.9 | 11,354 | 11,098 | 3,013 | 3,013 | | CON | AL
FIDENC
68.1 | E LIMITS O | F THE SAMPI
T OF 100 THE | Æ | WILL BE | | THE SAMP | LE ERROR | | | | | CON | AL
FIDENCE
68.1
68.1 % | E LIMITS O | F THE SAMPI
TOF 100 THE
F | LE
VOLUME | WILL BE | E TREE | N THE SAMP | LE ERROR | OF TREES | REQ. | INF. POP. | | CL:
SD: | 68.1 %
1.0 | E LIMITS O
TIMES OUT
COEF
VAR. | F THE SAMPI
T OF 100 THE
F
S.E.% | LE
VOLUME | WILL BE
SAMPL
DW | E TREE
AVG | I THE SAMP.
S - BF
HIGH | LE ERROR | | | INF. POP. | | CL:
SD: | FIDENCE
68.1
68.1 %
1.0
G FIR | E LIMITS O
TIMES OUT
COEF
VAR. | F THE SAMPI
F OF 100 THE
F
S.E.%
9.8 | LE
VOLUME | WILL BE SAMPL DW 323 | E TREE
AVG
358 | N THE SAMP | LE ERROR | OF TREES | REQ. | INF. POP. | | CL:
SD: | FIDENCE
68.1
68.1 %
1.0
G FIR
MLOCK | E LIMITS O
TIMES OUT
COEF
VAR. | F THE SAMPI
T OF 100 THE
F
S.E.% | LE
VOLUME | WILL BE
SAMPL
DW | E TREE
AVG | N THE SAMP
S - BF
HIGH
393 | LE ERROR | OF TREES | REQ. | INF. POP. | | CL:
SD:
DOUG
WHE! | FIDENCE
68.1
68.1 %
1.0
G FIR
MLOCK | E LIMITS OF TIMES OUT COEF VAR. 36.7 57.8 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8 | LE
VOLUME | SAMPL DW 323 174 | E TREE
AVG
358
219
306 | N THE SAMP
S - BF
HIGH
393
264 | LE ERROR | FOF TREES | REQ.
10 | | | CL:
SD:
DOUG
WHE! | AL FIDENCE 68.1 68.1 68.1% 1.0 G FIR MLOCK AL | E LIMITS OF
TIMES OUT
COEF
VAR.
36.7
57.8
47.1 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8 | .E
VOLUME
LC | WILL BE SAMPL DW 323 174 276 | E TREE AVG 358 219 306 ACRE AVG | S - BF HIGH 393 264 336 HIGH | LE ERROR | OF TREES 5 | REQ.
10 | INF. POP. | | CL:
SD:
DOUG
WHE!
TOTA | 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 | E LIMITS OF TIMES OUT COEF VAR. 9 COEF VAR. 9 120.1 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5 | .E
VOLUME
LC | SAMPL DW 323 174 276 TREES/DW 16 | E TREE AVG 358 219 306 ACRE AVG 21 | N THE SAMP. S - BF HIGH 393 264 336 HIGH 26 | LE ERROR | OF TREES 5 93 FOF PLOTS | REO. 10 23 REO. | INF. POP. | | CL:
SD:
DOUG
WHE!
TOTA
CL:
SD:
DOUG
WHE! | 68.1 % 1.0 G FIR MLOCK 48.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR MLOCK | E LIMITS OF TIMES OUT COEF VAR. 936.7 57.8 47.1 COEF VAR. 120.1 97.3 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5
19.9 | .E
VOLUME
LC | SAMPL DW 323 174 276 TREES/ DW 16 21 | E TREE AVG 358 219 306 ACRE AVG 21 27 | S - BF
HIGH
393
264
336
HIGH
26
32 | LE ERROR | FOF TREES 5 93 FOF PLOTS 5 | REQ.
10
23
REQ.
10 | INF. POP. 10 INF. POP. 11 | | CL: SD: DOUG | 68.1 % 1.0 G FIR MLOCK 48.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR MLOCK | E LIMITS OF TIMES OUT COEF VAR. 9 COEF VAR. 9 120.1 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5 | .E
VOLUME
LC | SAMPL DW 323 174 276 TREES/DW 16 | E TREE AVG 358 219 306 ACRE AVG 21 | N THE SAMP. S - BF HIGH 393 264 336 HIGH 26 | LE ERROR | OF TREES 5 93 FOF PLOTS | REO. 10 23 REO. | INF. POP. | | CL: SD: DOUG | 68.1 % 1.0 G FIR MLOCK 48.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR MLOCK | E LIMITS OF TIMES OUT COEF VAR. 936.7 57.8 47.1 COEF VAR. 120.1 97.3 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5
19.9
14.2 | .E
VOLUME
LC | SAMPL DW 323 174 276 TREES/ DW 16 21 | E TREE
AVG
358
219
306
ACRE
AVG
21
27
47 | S - BF
HIGH
393
264
336
HIGH
26
32
54 | LE ERROR | FOF TREES 5 93 FOF PLOTS 5 | REQ.
10
23
REQ.
10 | INF. POP. 10 INF. POP. 11 | | CL: SD: DOUG | 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR MLOCK AL | E LIMITS OF TIMES OUT COEF VAR. 47.1 COEF VAR. 120.1 97.3 69.4 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5
19.9
14.2 | E
VOLUME
LC | WILL BE SAMPL DW 323 174 276 TREES/ DW 16 21 41 BASAL DW | E TREE
AVG
358
219
306
ACRE
AVG
21
27
47 | S - BF
HIGH
393
264
336
HIGH
26
32
54
ACRE
HIGH | LE ERROR | 93 FOF PLOTS 5 | REQ.
10
23
REQ.
10 | INF. POP. 15 INF. POP. 15 | | CL: SD: DOUG WHE! SD: DOUG WHE! TOTA | 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0. | E LIMITS O
TIMES OUT
COEF
VAR. 36.7
57.8
47.1
COEF
VAR. 120.1
97.3
69.4
COEF
VAR. 115.4 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5
19.9
14.2
F | E
VOLUME
LC | SAMPL DW 323 174 276 TREES/ DW 16 21 41 BASAL | E TREE AVG 358 219 306 ACRE AVG 21 27 47 AREA/A AVG 40 | S - BF
HIGH
393
264
336
HIGH
26
32
54 | LE ERROR | OF TREES 5 93 FOF PLOTS 5 201 FOF PLOTS | REQ. 10 23 REQ. 10 50 REQ. | INF. POP. 1: 10 INF. POP. 1: 22 INF. POP. | | CL: SD: DOUG WHE! TOTA CL: SD: DOUG WHE! TOTA CL: SD: DOUG DOUG | 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0. | E LIMITS O
TIMES OUT
COEF
VAR. 36.7
57.8
47.1
COEF
VAR. 120.1
97.3
69.4
COEF
VAR. 95.7 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5
19.9
14.2
F
% S.E.%
23.5
19.5 | E
VOLUME
LC | SAMPL DW 323 174 276 TREES/ DW 16 21 41 BASAL DW 31 27 | E TREE AVG 358 219 306 ACRE AVG 21 27 47 AREA/A AVG 40 34 | S - BF HIGH 393 264 336 HIGH 26 32 54 ACRE HIGH 50 40 | LE ERROR | OF TREES 5 93 FOF PLOTS 5 201 FOF PLOTS 5 | REQ. 10 23 REQ. 10 50 REQ. 10 | INF. POP. 1: 10 INF. POP. 1: 22 INF. POP. 1: | | CL: SD: DOUG WHE! TOTA CL: SD: DOUG WHE! TOTA CL: SD: DOUG DOUG | 68.1 % 1.0 G FIR MLOCK AL | E LIMITS O
TIMES OUT
COEF
VAR. 36.7
57.8
47.1
COEF
VAR. 120.1
97.3
69.4
COEF
VAR. 115.4 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5
19.9
14.2
F | E
VOLUME
LC | SAMPL DW 323 174 276 TREES/ DW 16 21 41 BASAL DW 31 | E TREE AVG 358 219 306 ACRE AVG 21 27 47 AREA/A AVG 40 | S - BF HIGH 393 264 336 HIGH 26 32 54 ACRE HIGH 50 | LE ERROR | OF TREES 5 93 FOF PLOTS 5 201 FOF PLOTS | REQ. 10 23 REQ. 10 50 REQ. | INF. POP. 1: 10 INF. POP. 1: 22 INF. POP. | | CL: SD: DOUG WHE! TOTA CL: SD: DOUG WHE! TOTA CL: SD: TOTA | 68.1 % 1.0 G FIR MLOCK AL | E LIMITS OF TIMES OUT COEF VAR. 36.7 57.8 47.1 COEF VAR. 120.1 97.3 69.4 COEF VAR. 115.4 95.7 61.5 COEF | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5
19.9
14.2
F
% S.E.%
23.5
19.5
12.6 | E
VOLUME
LC | SAMPL DW 323 174 276 TREES/ DW 16 21 41 BASAL DW 31 27 | E TREE AVG 358 219 306 ACRE AVG 21 27 47 AREA/A AVG 40 34 74 | S - BF
HIGH
393
264
336
HIGH
26
32
54
ACRE
HIGH
50
40
83 | LE ERROR # | FOF TREES 5 93 FOF PLOTS 5 201 FOF PLOTS 5 158 FOF PLOTS | REQ. 10 23 REQ. 10 50 REQ. 10 39 REQ. | INF. POP. 1: 10 INF. POP. 1: 22 INF. POP. 1: 18 INF. POP. | | CL: SD: DOUG WHEI TOTA CL: SD: DOUG WHEI TOTA CL: SD: CL: SD: CL: SD: CL: SD: CL: SD: | 68.1 % 1.0 G FIR MLOCK AL 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR | E LIMITS OF TIMES OUT COEF VAR. 36.7 57.8 47.1 COEF VAR. 120.1 97.3 69.4 COEF VAR. 115.4 95.7 61.5 COEF VAR. 1.5 C | F THE SAMPI
F OF 100 THE F 8 S.E.% 9.8 20.4 9.8 F 8 S.E.% 24.5 19.9 14.2 F 8 S.E.% 23.5 19.5 12.6 F | LC LC | WILL BE SAMPL DW 323 174 276 TREES/ DW 16 21 41 BASAL DW 31 27 65 NET BF | E TREE AVG 358 219 306 ACRE AVG 21 27 47 AREA/A AVG 40 34 74 VACRE AVG | S - BF HIGH 393 264 336 HIGH 26 32 54 ACRE HIGH 50 40 83 HIGH | LE ERROR # | 93 FOF PLOTS 5 201 FOF PLOTS 5 | REQ. 10 23 REQ. 10 50 REQ. 10 39 | INF. POP. 1: 10 INF. POP. 1: 2: INF. POP. 1: 10 INF. POP. | | CL: SD: DOUG WHEI TOTA | 68.1 % 1.0 G FIR MLOCK AL 68.1 % 1.0 G FIR | E LIMITS OF TIMES OUT COEF VAR. 36.7 57.8 47.1 COEF VAR. 120.1 97.3 69.4 COEF VAR. 115.4 95.7 61.5 COEF VAR. 118.6 | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5
19.9
14.2
F
% S.E.%
23.5
19.5
12.6
F | LC LC | WILL BE SAMPL DW 323 174 276 TREES/ DW 16 21 41 BASAL DW 31 27 65 NET BF DW 5,214 | E TREE AVG 358 219 306 ACRE AVG 21 27 47 AREA/A AVG 40 34 74 VACRE AVG 6,877 | S - BF
HIGH
393
264
336
HIGH
26
32
54
ACRE
HIGH
50
40
83 | LE ERROR # | FOF TREES 5 93 FOF PLOTS 5 201 FOF PLOTS 5 158 FOF PLOTS | REQ. 10 23 REQ. 10 50 REQ. 10 39 REQ. | INF. POP. 1: 10: INF. POP. 1: 2: INF. POP. 1: | | CL: SD: DOUG WHEI TOTA | AL FIDENCE 68.1 68.1 % 1.0 G FIR MLOCK AL | E LIMITS OF TIMES OUT COEF VAR. 36.7 57.8 47.1 COEF VAR. 120.1 97.3 69.4 COEF VAR. 115.4 95.7 61.5 COEF VAR. 1.5 C | F THE SAMPI
F OF 100 THE
F
% S.E.%
9.8
20.4
9.8
F
% S.E.%
24.5
19.9
14.2
F
% S.E.%
23.5
19.5
12.6
F | LC LC | WILL BE SAMPL DW 323 174 276 TREES/ DW 16 21 41 BASAL DW 31 27 65 NET BF DW 5,214 8,340 | E TREE AVG 358 219 306 ACRE AVG 21 27 47 AREA/A AVG 40 34 74 VACRE AVG | S - BF HIGH 393 264 336 HIGH 26 32 54 ACRE HIGH 50 40 83 HIGH | LE ERROR # | FOF TREES 5 93
FOF PLOTS 5 201 FOF PLOTS 5 158 FOF PLOTS | REQ. 10 23 REQ. 10 50 REQ. 10 39 REQ. | INF. POP. 1: 10 INF. POP. 1: 2: INF. POP. 1: 10 INF. POP. | | | | 806W S13 | | | | | <u> </u> | [| | | | ~ | | | | | JI.JUANI | |-------|--------|----------------|----|-----|----------|------------|---|---|-------------|-----|-----|-------|-----|-------|-------|-------------|-----------| | Cnn | S
T | So Gr
rt de | | | Def
% | Net
MDE | Spc 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-19 20-23 24-29 30-39 40+ | | | | | | | | | | | | ~ F F | | | | | 70 | | | | 4-5 | 6-7 | 8-9 | 10-11 | | 14-15 | 16-19 | 20-23 24-29 | 30-39 40+ | | Н | | DO 2S | | | | 7 | l | | | | | | 7 | | | | | | H | | DO 2S | | | | 76 | | | | | | 0 | 59 | 17 | | | | | Н | | DO 2S | 40 | 303 | 4.9 | 289 | 31.9 | | | | | 11 | 168 | 57 | 53 | | | | Н | | DO 3S | 28 | 0 | | 0 | .0 | | | 0 | | | | | | | | | Н | | DO 3S | 30 | 9 | | 9 | 1.0 | | | 9 | | | | | | | | | Н | | DO 3S | 32 | 206 | 4.4 | 197 | 21.8 | | | 37 | 51 | 109 | 0 | | | | | | Н | | DO 3S | 34 | 19 | | 19 | 2.1 | | | 19 | | | | | | | | | Н | | DO 3S | 36 | 30 | | 30 | 3.4 | | | 30 | 0 | | | | | | | | Н | | DO 3S | 38 | 10 | | 10 | 1.1 | | | 10 | | | | | | | | | Н | | DO 3S | 40 | 147 | | 146 | 16.2 | | | 131 | 1 | 15 | | | | | | | Н | | DO 4S | 12 | 2 | | 2 | .2 | : | | 2 | | | | | | | | | Н | | DO 4S | 14 | 0 | | 0 | .0 | | | 0 | | | | | | | | | Н | | DO 4S | 16 | 46 | 6.0 | 43 | 4.7 | | 3 | 36 | 4 | | | | | | | | Н | | DO 4S | 18 | 9 | | 9 | 1.0 | | 0 | 9 | | | | | | | | | Н | | DO 4S | 20 | 12 | | 12 | 1.3 | | 5 | 6 | 0 | 0 | | | | | | | Н | | DO 4S | 22 | 25 | 19.6 | 20 | 2.2 | | | 20 | | | | | | | | | Н | | DO 4S | 24 | 11 | | 11 | 1.3 | | | 6 | 6 | | | | | | | | Н | | DO 4S | 26 | 6 | | 6 | .7 | | | 6 | | | | | | | | | Н | | DO 4S | 28 | 3 | | 3 | .4 | | | 3 | | | | | | | | | Н | | DO 4S | 30 | 10 | | 10 | 1.1 | | | 10 | | | | | | | | | Н | | DO 4S | 32 | 4 | 39.8 | 3 | .3 | | | 3 | | | | | | | | | Н | | Total | S | 937 | 3.7 | 903 | 45.2 | | 8 | 337 | 62 | 135 | 235 | 73 | 53 | | | | D | | DO 2S | 16 | 8 | 11.9 | 7 | .7 | | | | | | 7 | 0 | | | | | D | | DO 2S | 18 | 0 | | 0 | .0 | | | | | | | | 0 | | | | D | | DO 2S | 20 | 5 | 21.2 | 4 | .4 | | | | | | 0 | 4 | 0 | | | | D | | DO 2S | 24 | 28 | 3.1 | 27 | 2.7 | | | | | | | | 27 | | | | D | | DO 2S | 26 | 1 | | 1 | .1 | | | | | | | | 1 | | | | D | | DO 2S | 30 | | | 27 | 2.6 | | | | | 26 | 0 | 1 | | | | | D | | DO 2S | 32 | 38 | | 38 | 3.7 | | | | | | 31 | 4 | 2 | | | | D | | DO 2S | 40 | 430 | 1.6 | 423 | 41.8 | | | | | 64 | 163 | 136 | 57 | 3 0 | 0 | | D | | DO 3S | 16 | 0 | | 0 | .0 | | | | | 0 | | | | | | | D | İ | DO 3S | 18 | 4 | | 4 | .4 | | | | | 4 | | | | | | | D | | DO 3S | 20 | 6 | | 6 | .6 | | | | 0 | | | 6 | | | | | D | | DO 3S | 24 | 0 | | 0 | .0 | | | 0 | | | | | | | | | D | | DO 3S | 26 | 4 | | 4 | .4 | | | | 4 | | | | | | | | D | | DO 3S | 28 | 4 | | 4 | .4 | | | | 4 | TC PLOGSTVB ### Log Stock Table - MBF T07N R06W S12 TyTAKE THRU T07N R06W S13 TyMCC Project: TTW Acres 103.00 Page 2 Date 7/11/2012 Time 7:51:50AM | | s | So Gr | I |
[_0g | Gross | Def | Net | % | | ין | Net Vol | ume by | Scaling | Dian | neter in | Inches | | | | | |-----|---|-------|-------|----------|-------|------|-------|------|-----|-----|---------|---------|---------|------|-------------|---|-------|-------|-------|-----| | Spp | | | | | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | | | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | D | | DO 3 | | 30 | 12 | | 12 | | | | | ******* | 12 | | 1090 | *************************************** | | | | | | D | | DO 3 | S | 32 | 103 | 7.5 | 95 | 9.4 | | | 8 | 68 | 19 | 0 | | | | | | | | D | | DO 3 | S | 34 | 14 | | 14 | 1.4 | | | 14 | | | | | | | | | | | D | | DO 3 | S | 36 | 62 | 1.4 | 61 | 6.0 | | | 23 | 38 | | | | | | | | | | D | | DO 3 | S | 40 | 204 | | 204 | 20.2 | | | 92 | 63 | 48 | | | | | | | | | D | | DO 4 |
S | 12 | 5 | | 5 | .5 | | | 4 | 2 | | | | | | | | | | D | | DO 4 | | 14 | 1 | | 1 | .1 | | | 1 | 0 | | | | | | • | | | | D | | DO 43 | | 16 | | 1.6 | 30 | | | 4 | 23 | 2 | | 0 | | | | | | | | D | | DO 4 | S | 18 | 13 | | 13 | 1.3 | | | 13 | 0 | | | | | | | | | | D | | DO 4 | S | 20 | 4 | | 4 | .4 | | | 4 | 0 | | | | | | | | | | D | | DO 45 | S | 22 | 2 | | 2 | .2 | | | 2 | 0 | | | | | | | | | | D | | DO 48 | S | 24 | 7 | | 7 | .7 | | | 7 | 0 | | | | | | | | | | D | | DO 48 | S | 26 | 6 | | 6 | .6 | | | 6 | | | | | | | | | | | D | | DO 45 | S | 28 | 4 | | 4 | .4 | | | 4 | | | | | | | | | | | D | ĺ | DO 45 | S | 30 | 3 | | 3 | .3 | | | 3 | | | | | | | | | | | D | | DO 48 | S | 32 | 3 | 20.2 | 3 | .3 | | | 3 | 0 | | | | | | | | | | D | | DO 48 | S | 36 | 0 | | 0 | .0 | | | | | 0 | | | | | | | | | D | | Tota | als | | 1,031 | 1.9 | 1,011 | 50.6 | | 4 | 208 | 182 | 174 | 202 | 151 | 88 | 3 | 0 | 0 | | | Α | | DO C | R | 16 | 21 | | 21 | 35.0 | | | 21 | | | | | | | | | | | A | | DO C | R | 20 | 4 | | 4 | 6.3 | | | 4 | | | | | | | | | | | Α | | DO C | R | 24 | 5 | | . 5 | 7.7 | | | 5 | | | | | | | | | | | A | | DO C | R | 30 | 8 | | 8 | 12.7 | | | 8 | | | | | | | | | | | A | | DO C | R | 36 | 15 | | 15 | 25.4 | | | 15 | | | | | | | | | • | | A | | DO C | R | 40 | 8 | | 8 | 12.8 | | | 8 | | | | | | | | | | | Α | | Tota | ıls | | 61 | | 61 | 3.0 | | | 61 | | | | | | | | | | | NF | | DO 25 | S | 16 | 6 | 38.1 | 4 | 15.7 | | | | | | | | 4 | | | | | | NF | | DO 25 | | 32 | 5 | | 5 | 23.1 | | | | | | 5 | | | | | | | | NF | | DO 28 | S | 40 | 10 | | 10 | 43.1 | | | | | | 10 | | 0 | | | | | | NF | | DO 35 | S | 32 | 4 | | 4 | 18.0 | | | 4 | | | | | | | | | | | NF | | DO 35 | S | 40 | 0 | | 0 | .0 | | | 0 | | | | | | | | | | | NF | | Tota | ıls | | 24 | 8.8 | 22 | 1.1 | | | 4 | | | 15 | | 4 | | | | | | С | | DO 25 | S | 32 | 0 | 6.6 | 0 | 79.3 | | | | | | | | | 0 | 0 | | | | С | | DO 35 | 3 | 30 | 0 | | 0 | 12.5 | | | 0 | | | | | | | | | | | С | | DO 35 | S | 32 | 0 | | 0 | 8.2 | | | | | | 0 | | | | | | | | С | | Tota | ıls | | 0 | 5.3 | 0 | .0 | | | 0 | | | 0 | | | 0 | 0 | | | | | | | | 二 | | | | | | | | | | | | | | | | | | TC I | PLO | GSTVB | | | | | Log | Stock | Table | - MB | F | | | | | | | | | |-------|--|----------|------|-------|-----|-------|-------|-------|-------|----------------------|--------|-------------------------------|--------|------------|--------|-------|-------|-------|-----| | | T07N R06W S12 TyTAKE THRU T07N R06W S13 TyMCC Project: TTW Acres 103.00 | | | | | | | | | Page
Date
Time | | 3
1/2012
51:50 <i>A</i> | | | | | | | | | | s | So Gr | Log | Gross | Def | Net | % | | 1 | let Volu | ıme by | Scaling | g Dian | neter in 1 | Inches | | | | ** | | Spp | T | rt de | Len | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | Total | | All Spec | eies | 2,054 | 2.7 | 1,998 | 100.0 | | 13 | 609 | 245 | 308 | 452 | 225 | 144 | 3 | 0 | 0 | | | TC | PSTNDSUM | Stand Ta | ble Summary | Page
Date: | 1
7/11/2012 | |-----|----------------------------|----------|-------------|---------------|----------------| | Т07 | 'N R06W S12 TyTAKE
THRU | Project | TTW | Time: | 7:51:51AM | TOTN R06W S13 TyMCC Acres 232.50 Grown Year: | L | | | | | | | | l . | - | | | | | | |--------|----------|-----------------|-----------|-----------|----------------|-------------|--------------|---------------|----------------|---------------|----------------|----------------|-------------|-------| | S | | | *21*2 | Tot | 700 | TD 4 / | . | Averag
Net | e Log
Net | m , | Net | Net | Totals | | | Spc T | DBH | Sample
Trees | FF
16' | Av
Ht | Trees/
Acre | BA/
Acre | Logs
Acre | Cu.Ft. | Bd.Ft. | Tons/
Acre | Cu.Ft.
Acre | Bd.Ft.
Acre | Tons Cunits | MBF | | D | 8 | 2 | 85 | 21 | .963 | .34 | .96 | 4.0 | 20.0 | | 4 | 19 | 9 | 4 | | D | 9 | 8 | 88 | 38 | 3.044 | 1.34 | 3.04 | 7.3 | 32.5 | | 22 | 99 | 51 | 23 | | D | 10 | 10 | 88 | 62 | 3.082 | 1.68 | 3.08 | 12.0 | 44.0 | | 37 | 136 | 86 | 32 | | D | 11 | 12 | 85 | 70 | 2.606 | 1.72 | 2.61 | 16.2 | 54.1 | | 42 | 141 | 98 | 33 | | D | 12 | 8 | 85 | 75 | 1.287 | 1.01 | 2.14 | 13.4 | 44.0 | | 29 | 94 | 67 | 22 | | D | 13 | 21 | 88 | 69 | 1.472 | 1.36 | 1.84 | 19.2 | 63.8 | | 35 | 118 | 82 | 27 | | D | 14 | 18 | 84 | 67 | 1.580 | 1.69 | 2.21 | 19.6 | 51.4 | | 43 | 114 | 101 | 26 | | D | 15 | 19 | 85 | 71 | 1.649 | 2.02 | 3.02 | 18.8 | 59.1 | | 57 | 179 | 132 | 42 | | D | 16 | 12 | 86 | 139 | .884 | 1.23 | 2.65 | 23.3 | 93.1 | | 62 | 246 | 143 | 57 | | D | 17 | 24 | 86 | 109 | 3.473 | 5.47 | 8.45 | 26.2 | 95.7 | | 221 | 808 | 514 | 188 | | D | 18 | 20 | 85 | 112 | 2.424 | 4.28 | 5.54 | 32.2 | 114.7 | | 179 | 636 | 415 | 148 | | D | 19 | 12 | 89 | 121 | .627 | 1.23 | 1.27 | 42.9 | 167.8 | | 55 | 214 | 127 | 50 | | D | 20 | 11 | 85 | 97 | .735 | 1.60 | 1.49 | 39.5 | 136.1 | | 59 | 203 | 137 | 47 | | D | 21 | 10 | 86 | 114 | .728 | 1.75 | 1.87 | 38.8 | 149.4 | | 73 | 280 | 169 | 65 | | D | 22 | 5 | 89 | 104 | .493 | 1.30 | 1.00 | 54.8 | 203.1 | | 55 | 203 | 127 | 47 | | D | 23 | 6 | 86 | 120 | .850 | 2.45 | 2.54 | 44.4 | 177.1 | | 113 | 449 | 262 | 104 | | D | 24 | 10 | 88 | 133 | .462 | 1.45 | 1.36 | 51.2 | 218.3 | | 70 | 298 | 162 | 69 | | D | 25 | 4 | 86 | 126 | .044 | .15 | .13 | 53.2 | 225.0 | | 7 | 30 | 16 | 7 | | D | 26 | 3 | 83 | 134 | .031 | .11 | .09 | 59.7 | 232.2 | | 5 | 21 | . 13 | 5 | | D | 27 | 3 | 85 | 114 | .028 | .11 | .08 | 63.6 | 245.0 | | 5 | 19 | 11 | 4 | | D | 28 | 2 | 86 | 121 | .018 | .08 | .05 | 66.2 | 293.3 | | 3 | 16 | 8 | 4 | | D | 29 | 3 | 84 | 136 | .025 | .11 | .07 | 78.1 | 331.3 | | 5 | 22 | 12 | 5 | | D | 30 | 1 | 80 | 131 | .008 | .04 | .02 | 75.7 | 300.0 | | 2 | 7 | 4 | 2 | |
D | 49 | 1 | 91 | 129 | .000 | .00 | .00 | 220.0 | 1223.3 | | 0 | 0 | 0 | 0 | | D | Totals | 225 | 86 | 82 | 26.513 | 32.55 | 45.54 | 26.0 | 95.5 | | 1,182 | 4,351 | 2,748 | 1,011 | | Н | 8 | 9 | 85 | 25 | 4.691 | 1.64 | 4.69 | 5.0 | 17.5 | | 23 | 82 | 55 | 19 | | Н | 9 | 5 | 85 | 45 | 1.966 | .87 | 1.04 | 13.1 | 56.7 | | 14 | 59 | 32 | 14 | | Н | 10 | 12 | 82 | 45 | 6.773 | 3.69 | 6.77 | 11.1 | 37.7 | | . 75 | 255 | 175 | 59 | | Н | 11 | 26 | 87 | 65 | 6.886 | 4.50 | 8.13 | 12.9 | 43.2 | | 105 | 351 | 243 | 82 | | Н | 12 | 11 | 83 | 51 | 3.666 | 2.88 | 4.19 | 14.1 | 40.0 | | 59 | 167 | 137 | 39 | | Н | 13 | 16 | 86 | 60 | 1.838 | 1.69 | 2.29 | 19.5 | 60.0 | | 44 | 137 | 103 | 32 | | Н | 14 | 19 | 85 | 62 | 2.332 | 2.46 | 3.08 | 18.6 | 52.5 | | 57 | 162 | 133 | 38 | | Н | 15 | 18 | 84 | 84 | 1.382 | 1.70 | 2.76 | 21.9 | 76.9 | | 60 | 212 | 141 | 49 | | Н | 16 | 22 | 87 | 85 | 3.304 | 4.59 | 6.31 | 26.8 | 96.8 | | 169 | 611 | 393 | 142 | | Н | 17 | 22 | 88 | 92 | 3.168 | 4.99 | 6.08 | 32.6 | 117.4 | | 198 | 713 | 460 | 166 | | Н | 18 | 7 | 91 | 115 | .116 | .20 | .32 | 32.2 | 134.2 | | 10 | 43 | 24 | 10 | | Н | 19 | 8 | 91 | 92 | .866 | 1.70 | 1.73 | 40.0 | 145.1 | | 69 | 251 | 161 | 58 | | Н | 20 | 13 | 87 | 94 | 1.530 | 3.34 | 3.08 | 42.2 | 144.7 | | 130 | 446 | 303 | 104 | | Н | 21 | 11 | 87 | 95 | .343 | .83 | .69 | 39.1 | 140.1 | | 27 | 96 | 62 | 22 | | H | 22 | 4 | 90 | 93 | .780 | 2.06 | 1.40 | 55.1 | 190.1 | | 77 | 267 | 180 | 62 | | Н | 23 | 1 | 85 | 79
52 | .000 | .00 | .00 | 51.0 | 140.0 | | 0 | 0 | 0 | 0 | | Н | 24 | 4 | 82 | 52 | .147 | .46 | .16 | 64.5 | 109.9 | | 11 | 18 | 24 | 4 | | H | 25 | 1 | 89 | | .000 | .00 | .00 | 57.0 | 250.0 | | 0 | 0 | 0 | 0 | | H
H | 26
27 | 3
1 | 85
87 | 130
80 | .014
.000 | .05
.00 | .04
.00 | 68.4
72.0 | 315.0
245.0 | | 3 | 13
0 | 7 0 | 3 | | Н | Totals | 213 | 85 | 61 | 39.803 | 37.66 | 52.76 | 21.5 | 73.6 | | 1,133 | 3,885 | 2,633 | 903 | | A | 8 | 4 | 87 | 20 | 2.087 | .73 | 2.09 | 5.0 | 20.0 | | 10 | 42 | 2,033 | 10 | | A | 9 | 8 | 86 | 35 | 3.299 | 1.46 | 3.30 | 7.5 | 30.0 | | 25 | 99 | 58 | 23 | | A | 10 | 2 | 86 | 40 | .668 | .36 | .67 | 9.0 | 30.0 | | 6 | 20 | 14 | 5 | | A | 11 | 8 | 87 | 63 | 1.659 | 1.10 | 1.66 | 18.3 | 60.0 | | 30 | 100 | 71 | 23 | | A | 13 | 1 | 87 | 57 | .001 | .00 | .00 | 24.0 | 60.0 | | 0 | 0 | 0 | 0 | TC | PSTNDS | UM | | | | , | Stand | Table | Summa | ry | | | Page
Date: | 2
7/11/20 | 12 | |------------|----------|----------------------|-----------|-----------------|----------------|-------------|------------------|-------------------------|-------------------------|---------------|-----------------------|-----------------------|-------------------|---------------|----------| | | THRU | S12 TyTA
S13 TyMC | | | | | Project
Acres | | 232.5 | 50 | | | Time:
Grown Ye | 7:51:5
ar: | 1AM | | S
Spc T | DBH | Sample
Trees | FF
16' | Tot
Av
Ht | Trees/
Acre | BA/
Acre | Logs
Acre | Averag
Net
Cu.Ft. | ge Log
Net
Bd.Ft. | Tons/
Acre | Net
Cu.Ft.
Acre | Net
Bd.Ft.
Acre | Tons | Totals Cunits | MBF | | A | Totals | 23 | 86 | 37 | 7.715 | 3.65 | 7.71 | 9.3 | 33.8 | | 72 | 260 | | 167 | 61 | | NF
NF | 18
24 | 3 | 91
82 | 91
121 | .207
.116 | .36
.36 | .41
.35 | 34.5
36.4 | 125.0
126.8 | i | 14
13 | 52
44 | | 33
29 | 12
10 | | NF | Totals | 6 | 88 | 102 | .323 | .73 | .76 | 35.4 | 125.8 | | 27 | 96 | | 63 | 22 | | C
C | 15
37 | 1 | 76
87 | 46
135 | .000
.000 | .00 | .00 | 22.0
117.0 | 40.0
570.0 | | 0 | 0
0 | | 0
0 | 0 | | С | Totals | 2 | 78 | 59 | .001 | .00 | .00. | 53.4 | 215.0 | | 0 | 0 | | 0 | 0 | | Totals | | 469 | 86 | 66 | 74.354 | 74.59 | 106.78 | 22.6 | 80.5 | | 2,413 | 8,592 | | 5,611 | 1,998 | Revised August, 2002 ### CRUISE DESIGN ASTORIA DISTRICT | Sa | ıle i | Name: Thin to win Area(s) Area(s) Area(s) Area(s) Area(s) Area(s) Area(s) Area(s) | |-----|-------------------|--| | | | est Type: CC PC CT "Automark Thinning" (circle one) Net BF or | | Αŗ | pro | ox. Cruise Acres: 140 Estimated CV% 30 BA/Acre SE% Objective BA/Acre | | Pla | ann | ed Sale Volume: 700 MMBF Estimated Sale Area Value/Acre: \$ / 400 | | Α. | (b)
sta
tre | uise Goals: (a) Grade minimum conifer and hardwood trees: Sample cruise plots; (c) Other goals (Determine "automark" thinning and ards; Determine log grades for sale value; Determine snag and leave e species and sizes; Determine LWD (down wood) cubic feet and decay classes; Determine "diameter limit" harvest parameters;) sal Area leave target 30 sq. ft. Cruiser needs to select 6 or 7 leave trees per plot. | | В. | 1. | Plot Cruises: BAF | | C. | <u>Tro</u> | Diameter: Minimum DBH to cruise is $\underline{\mathcal{D}}$ " for conifers and $\underline{\mathcal{D}}$ " for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate. | | | 2. | Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable. | | | 3. | Top Cruise Diameter (TCD): Minimum top outside bark for conifer is $\underline{7}$ ", $\underline{7}$ " for hardwoods or $\underline{40}$ % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh. | | | 4. | Form Factors: (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87 | - **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. - 6. Species, Sort, and Grade Codes: A. Species: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) B. Sort: Use code "1" (Domestic). - C. Grade: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; 9 = Utility Hardwoods: #2 Sawmill = 12" + scaling diameter; #3 Sawmill = 10 and 11"; #4 Sawmill = 8 and 9" - **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at intervisible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint. - **9. Cruising Equipment:** Relaskop Rangefinder Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design | by: /1,22075.00/ | |---------------|------------------| | Approved by: | 1 Toleho | | Date: | 5/10/12 | | | | ### CRUISE DESIGN ASTORIA DISTRICT | | | Name: Thin to win Area(s) 2 | |-----|-------------------|--| | На | rve | est Type: CC PC CT "Automark Thinning" (circle one) Ox. Cruise Acres: | | | | | | Pla | ann | red Sale Volume: 1200 MMBF Estimated Sale Area Value/Acre: \$ 3,900 | | A. | (b)
sta
tre | wise Goals: (a) Grade minimum | | D | | | | Б. | 1. | Plot Cruises:
BAF 33.61 (Full point; Half point) (circle one) Fixed Plot Size Plot Radius Cruise Line Direction(s) FAST WEST Cruise Line Spacing Chains) (feet) Cruise Plot Spacing Chains) (feet) Grade/Count Ratio ISI ITS (Sample Tree) Cruises: Measure-grade ratios: D-fir Hemlock Spruce True Fir Cedar Hardwood | | C. | | Diameter: Minimum DBH to cruise is ② "for conifers and ③ "for hardwoods. Record dbh to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate. | | | 2. | Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in merchantable height, estimating to the nearest 5 feet is acceptable. | | | 3. | Top Cruise Diameter (TCD): Minimum top outside bark for conifer is $\underline{7}$ ", $\underline{7}$ " for hardwoods or $\underline{40}$ % of dob at 16' form point. Generally, use 7" outside bark for trees < 18" dbh and 40% of dob @ FP for trees > 18" dbh. | | | 4. | Form Factors: (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major | species on the cruise. Hardwood form factors are a Standard 87. conifer species on the cruise area, and use these to calculate average FF for the - **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. - 6. Species, Sort, and Grade Codes: A. Species: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) B. Sort: Use code "1" (Domestic). - C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; 9 = Utility Hardwoods: #2 Sawmill = 12" + scaling diameter; #3 Sawmill = 10 and 11"; #4 Sawmill = 8 and 9" - **7. Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at intervisible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses. ITS and 100% Cruises: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with yellow paint. - **9. Cruising Equipment:** Relaskop Rangefinder Logger's Tape (with dbh on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design | by: _ | 11,4075000 | | |---------------|-------|------------|--| | Approved by: | | 1 Tulialis | | | Date: | | 5/10/12 | | | , | | | |