

**District:** Forest Grove

November 04, 2011 Date:

# cost summary

|                            | Conifer        | Hardwood          | Total          |
|----------------------------|----------------|-------------------|----------------|
| Gross Timber<br>Sale Value | \$1,794,563.10 | \$22,248.60       | \$1,816,811.70 |
|                            |                | Project Work:     | \$(50,700.00)  |
|                            |                | Advertised Value: | \$1,766,111.70 |

11/4/11



"STEWARDSHIP IN FORESTRY"

District: **Forest Grove**  Date:

November 04, 2011

# timber description

Location: Portions of Sections 2 and 3, T2N, R6W, and Sections 34 and 35, T3N, R6W, W.M.,

2

Washington County, Oregon.

Stand Stocking: 20%

| SpecieName    | AvgDBH | Amortization (%) | Recovery (%) |
|---------------|--------|------------------|--------------|
| Douglas - Fir | 15     | 0                | 98           |
| Alder (Red)   | 15     | 0                | 98           |

| Volume by Grade | 28    | 3S    | <b>4</b> S | Camprur | Total |
|-----------------|-------|-------|------------|---------|-------|
| Douglas - Fir   | 1,844 | 3,094 | 555        | 0       | 5,493 |
| Alder (Red)     | 0     | 0     | 0          | 60      | 60    |
| Total           | 1,844 | 3,094 | 555        | 60      | 5,553 |

11/4/11



"STEWARDSHIP IN FORESTRY"

**District:** Forest Grove

Date: November 04, 2011

comments: Pond Values Used: 3rd Quarter Calendar Year 2011.

Western hemlock and Other Conifers Stumpage Price = Pond Value minus Logging Cost: \$276.25/MBF = \$455/MBF - \$178.75/MBF

Western redcedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost: \$721.25/MBF = \$900/MBF - \$178.75/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$4.00/Gallon

HAULING COST ALLOWANCE
Hauling costs equivalent to \$740 daily truck cost.

Other Costs (with Profit & Risk to be added):
Brand and Paint: 5,553 MBF @\$1/MBF = \$5,553
Operator's Choice Road: \$1,000
Intermediate Supports: 5 supports x \$200/support = \$1,000
Total Other Costs (with Profit & Risk to be added) = \$7,553

Other Costs (No Profit & Risk added):
Blocking/Waterbarring Skid Roads: 10 hrs @ \$150/hr = \$1,500
Firewood Sorting: 20 hrs @ \$150/hr = \$3,000
Covering Slash piles: \$1,000
Slash Treatment: 40 acres @ \$150/acre = \$6,000
Tree Topping: 180 trees x \$40/tree = \$7,200
Equipment Cleaning: 5 machines @ \$1,000 per machine = \$5,000
TOTAL Other Costs (No Profit & Risk added) = \$23,700

ROAD MAINTENANCE Move-in: \$2,000

General Road Maintenance: 8.4 miles x \$1,000/mile = \$8,400

TOTAL: \$10,400 / 5,553 MBF = \$1.87/MBF

11/4/11 3



"STEWARDSHIP IN FORESTRY"

District: **Forest Grove** 

November 04, 2011 Date:

# logging conditions

combination#: 1

Douglas - Fir

38.70%

yarding distance: Medium (800 ft)

Alder (Red)

68.00%

logging system:

downhill yarding: Process: Feller Buncher

tree size:

Shovel

Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: cost / mbf:

5.0

bd. ft / load:

5,000

machines:

\$57.54

Feller Buncher w/ Delimber

combination#: 2

Douglas - Fir

17.72%

Alder (Red)

32.00%

yarding distance: Medium (800 ft)

downhill yarding:

logging system:

Cable: Medium Tower >40 - <70

Process: Manual Falling/Delimbing

tree size:

Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day:

5.0

bd. ft / load:

5,000

cost / mbf:

\$138.40

machines:

Log Loader (A)

Tower Yarder (Medium)

combination#: 3

Douglas - Fir

17.00%

yarding distance: Medium (800 ft)

downhill yarding: Process: Stroke Delimber

logging system:

Shovel

Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

tree size: loads / day:

4.0

5.000

cost / mbf: machines: \$71.91

Stroke Delimber (B)

combination#: 4

Douglas - Fir

26.59%

bd. ft / load:

varding distance: Medium (800 ft)

Cable: Medium Tower >40 - <70 Process: Stroke Delimber

downhill yarding:

logging system: tree size:

Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF

loads / day:

4.0

bd. ft / load:

5,000

cost / mbf:

\$167.21

machines:

Log Loader (A) Stroke Delimber (A) Tower Yarder (Medium)

11/4/11

4



"STEWARDSHIP IN FORESTRY"

**District:** Forest Grove

Date: Novemb

November 04, 2011

logging costs

Operating Seasons:

2.00

Profit Risk:

10.00%

**Project Costs:** 

\$50,700.00

Other Costs (P/R):

\$7,553.00

Slash Disposal:

\$0.00

Other Costs:

\$23,700.00

# Miles of Road

Road Maintenance:

\$1.87

| Dirt | Rock<br>(Contractor) | Rock<br>(State) | Paved |  |
|------|----------------------|-----------------|-------|--|
| 0.0  | 0.0                  | 0.0             | 0.0   |  |

# Hauling Costs

| Species       | \$/MBF | Trips/Day | MBF / Load |
|---------------|--------|-----------|------------|
| Douglas - Fir | \$0.00 | 3.0       | 5.0        |
| Alder (Red)   | \$0.00 | 2.0       | 3.5        |

11/4/11 5



"STEWARDSHIP IN FORESTRY"

District:

**Forest Grove** 

Date:

November 04, 2011

# logging costs breakdown

| Logging    | Road<br>Maint | Fire<br>Protect | Hauling | Other<br>P/R appl | Profit &<br>Risk | Slash<br>Disposal | Scaling | Other  | Total    |
|------------|---------------|-----------------|---------|-------------------|------------------|-------------------|---------|--------|----------|
| Douglas -  | Fir           |                 |         |                   |                  |                   |         |        |          |
| \$103.47   | \$1.91        | \$1.58          | \$45.75 | \$1.36            | \$15.41          | \$0.00            | \$5.00  | \$4.27 | \$178.75 |
| Alder (Red | 1)            |                 |         |                   |                  | , i               |         |        |          |
| \$83.42    | \$1.91        | \$1.58          | \$98.02 | \$1.36            | \$18.63          | \$0.00            | \$5.00  | \$4.27 | \$214.19 |

| Specie        | Amortization | Pond Value | Stumpage | Amortized |
|---------------|--------------|------------|----------|-----------|
| Douglas - Fir | \$0.00       | \$505.45   | \$326.70 | \$0.00    |
| Alder (Red)   | \$0.00       | \$585.00   | \$370.81 | \$0.00    |

11/4/11



"STEWARDSHIP IN FORESTRY"

**District:** Forest Grove

Date:

November 04, 2011

# summary

|  |  | ize |  |
|--|--|-----|--|

| Specie        | MBF | Value  | Total  |
|---------------|-----|--------|--------|
| Douglas - Fir | 0   | \$0.00 | \$0.00 |
| Alder (Red)   | 0   | \$0.00 | \$0.00 |

### Unamortized

| Specie        | MBF   | Value    | Total          |
|---------------|-------|----------|----------------|
| Douglas - Fir | 5,493 | \$326.70 | \$1,794,563.10 |
| Alder (Red)   | 60    | \$370.81 | \$22,248.60    |

# **Gross Timber Sale Value**

Recovery:

\$1,816,811.70

Prepared by: Peter Stone

Phone: 503-359-7477

# TIMBER SALE SUMMARY **Big Bell**

Contract No. 341-12-06

- 1. Type of Sale: The Timber Sale Area is a combination of Partial Cut-Moderate (PC-M) and Modified Clearcut (MC). The sale is recovery, sealed bid auction.
- 2. Revenue Distribution: 100% BOF; Washington County.
- 3. Sale Acreage: Area 1 is 112 acres of Modified Clearcut, Area 2 is 177 acres of Partial Cut -Moderate, Area 3 is 8 acres of Partial Cut – Moderate, and Area 4 is 2 acres of Right-of-Way. Acres are net of stream buffers and existing road prisms. Area 4 acres were deducted from Area 2. Acreage was determined using ESRI ArcMap GIS software.
- **4.** Cruise Data: Volume estimates and plot data statistics were computed using SuperACE timber cruise software. The volume for Area 4 was estimated from Area 2 cruise information.

For more information see Cruise Report.

- 5. Timber Description: Timber Sale Area is medium to well stocked, 60 year old Douglas-fir stand with minor amounts of western hemlock, western redcedar, and hardwoods. The average Douglas-fir DBH is approximately 15 inches.
  - a. PC-M (Areas 2 & 3): Estimated average net volume is 13.2 MBF per acre.
  - b. MC (Area 1): Estimated average net volume is 27.7 MBF per acre.
- **6.** Topography and Logging Method: Slopes within the sale are predominately North and East facing aspects ranging from 5% to 70%. The sale area has 31% cable-based yarding and 69% ground-based yarding.
- 7. Access: From Timber Road, turn onto Cochran County Road and continue for 3.8 miles, turn left onto Round Top Road and continue for 1.9 miles, stay straight onto Bell Camp Road and continue for 1 mile. You are now at the Northeast corner of the Timber Sale Area.
- 8. Projects:

Project No. 1 - construct 1.37 miles of road - \$21,661.92.

Project No. 2 - surface 0.63 miles of road - \$19,668.79.

Project No. 3 - grass seed, fertilize, and mulch - \$402.41.

Project No. 4 road vacating - \$2939.72.

Equipment Move-in and Cleaning - \$6,024.21

Total credit for project work is \$50,700

### 9. Other Costs:

Other Costs (with Profit and Risk to be added): Brand and Paint: 5,553 MBF @\$1/MBF = \$5,553

Operator's Choice Road: \$1,000

Intermediate Supports: 5 supports x \$200/support = \$1,000 Total Other Costs (with Profit & Risk to be added) = \$7,553

Other Costs (No Profit & Risk added):

Blocking/Waterbarring Skid Roads: 10 hrs @ \$150/hr = \$1,500

Firewood Sorting: 20 hrs @ \$150/hr = \$3,000

Covering Slash piles: \$1,000

Slash Treatment: 40 acres @ \$150/acre = \$6,000 Tree Topping: 180 trees x \$40/tree = \$7,200

Equipment Cleaning: 5 machines @ \$1,000 per machine = \$5,000

TOTAL Other Costs (No Profit & Risk added) = \$23,700

### ROAD MAINTENANCE

Move-in: \$2,000

General Road Maintenance: 8.4 miles x \$1,000/mile = \$8,400

TOTAL: \$10,400 (\$1.87/MBF)

### **Pre-Operations Report**

Operation Name: Big Bell

Management Basin: Gales Creek, Wheeler, Upper Salmonberry Sale Quarter: 1 **BOF** 100% **County (%):** Washington 100% **CSL** 0%

### I. VOLUME AND VALUE SUMMARY

Table 1. Types, Acres, and Value

| Area    | Harvest                                                 | Anticipated          | Gross | Net   | MBF/              | MBF/Area <sup>1</sup> | \$/MBF <sup>2</sup> | \$/Area     |
|---------|---------------------------------------------------------|----------------------|-------|-------|-------------------|-----------------------|---------------------|-------------|
| Titea   | Туре                                                    | Product <sup>3</sup> | Acres | Acres | Acre <sup>1</sup> | MDI'/ Mea             | φ/ WIDI             | φ/ Mea      |
| 1       | MC                                                      | DF-M                 | 128   | 105   | 31.5              | 3,308                 | \$350               | \$1,157,800 |
| 2       | PC-M                                                    | DF-M                 | 175   | 165   | 11                | 1,815                 | \$300               | \$544,500   |
| 3       | PC-M                                                    | DF-M                 | 7     | 7     | 11                | 77                    | \$300               | \$23,100    |
| 4       | Snag                                                    | Hard snags           | 48    | 46    | 0                 | 0                     | 0                   | 0           |
| Total   |                                                         | Regeneration         | 128   | 105   |                   | 5,200                 |                     |             |
| Total   |                                                         | Partial Cut          | 182   | 172   |                   | Gross V               | alue                | \$1,725,400 |
| 1. Esti | 1. Estimated harvest volume per acre or Area.           |                      |       |       |                   |                       | Costs               | \$74,000    |
| 2 Eat   | 2 Estimated (stumpage value) (evaluating Project Costs) |                      |       |       |                   |                       | 1                   | #1 (F1 400  |

Estimated 'stumpage value' (excluding Project Costs)

### II. PHYSICAL DESCRIPTION OF OPERATION AREA

Table 2. Physical Characteristics of Operation Area

| Location: T3N, R6W, Sec 34, 35 & T2N, R6W, Secs 1, 2, 3 |                          |  |  |  |
|---------------------------------------------------------|--------------------------|--|--|--|
| Rainfall:                                               | Elevation: 2,400 – 2,700 |  |  |  |
| Site Index: 132                                         | Aspect: varied           |  |  |  |
| Vegetation Zone:                                        | Other:                   |  |  |  |
| Soils: Jewell, Elsie, Osweg                             |                          |  |  |  |

### **III. CURRENT STAND CONDITION:**

Table 3. Stand Inventory Information

|      | Table 5. Starte III Chicoly III Chilatelli |                                   |         |     |     |     |     |       |           |  |  |
|------|--------------------------------------------|-----------------------------------|---------|-----|-----|-----|-----|-------|-----------|--|--|
| Area | Stand ID                                   | Measured<br>/Imputed <sup>1</sup> | Species | Age | TPA | DBH | BA  | % SDI | Net Acres |  |  |
| 1    | 7537                                       | I                                 | DF      | 61  | 89  | 18  | 150 | 37    | 48        |  |  |
|      | 7551                                       | M                                 | DF      | 55  | 149 | 16  | 214 | 54    | 47        |  |  |
|      | 7553                                       | M                                 | DF      | 59  | 181 | 15  | 212 | 56    | 10        |  |  |
| 2    | 7537                                       | I                                 | DF      | 61  | 89  | 18  | 150 | 37    | 140       |  |  |
|      | 7494                                       | M                                 | DFCX    | 60  | 152 | 17  | 225 | 56    | 25        |  |  |
| 3    | 7551                                       | M                                 | DF      | 55  | 149 | 16  | 214 | 54    | 7         |  |  |
| 4    | 75172                                      | M                                 | DFRA    | 60  | 43  | 19  | 88  | 21    | 46        |  |  |

Identify the source of stand inventory information. Use the following codes: M = Measure SLI data, I = Imputed SLI data, P = Pre-Cruise Plots, O = other (if other, describe below).

Anticipated Product (AA-B-C) – AA) SLI species code of the bid species, B) Size Class (S – small [average DBH < 15], M – medium [average DBH 15 to 23], L - large (average DBH > 23]), C) Special Product (P - Premium, H - Hardwood)

This is a shelter wood stand. Inventory information reflects the current overstory.

Table 4. Additional Stand Information

| Area | Stand ID | Snags/<br>Acre <sup>1</sup> | Down<br>Wood /<br>Acre² | % Ground<br>Cover | Predominant Understory Vegetation | Forest Health<br>Issues |
|------|----------|-----------------------------|-------------------------|-------------------|-----------------------------------|-------------------------|
| 1    | 7537     | 2                           | 478                     | 99                | n/a                               |                         |
|      | 7551     | 0                           | 67                      | 29                | Salal                             |                         |
|      | 7553     | 0                           | 25                      | 50                | Salal                             |                         |
| 2    | 7537     | 2                           | 478                     | 99                | n/a                               |                         |
|      | 7494     | 1                           | 25                      | 59                | Salal, Sword Fern                 |                         |
| 3    | 7551     | 0                           | 67                      | 29                | Salal                             |                         |
| 4    | 7517     | 0                           | 252                     | 100               | Sword Fern, Bracken Fern          |                         |

<sup>1.</sup> Identify the number of hard snags per acre (decay classes 1 and 2).

### IV. DESIRED FUTURE CONDITION/VISION:

Table 5. Stand Structure Information

| Area | Stand ID | Current | Post Harvest <sup>1</sup> | Post Harvest <sup>1</sup> Desired Future |     |
|------|----------|---------|---------------------------|------------------------------------------|-----|
| 1    | 7537     | UDS     | REG GEN                   |                                          | 48  |
|      | 7551     | CSC     | REG                       | GEN                                      | 47  |
|      | 7553     | UDS     | REG                       | GEN                                      | 10  |
| 2    | 7537     | UDS     | UDS                       | GEN                                      | 140 |
|      | 7494     | LYR     | LYR                       | OFS                                      | 25  |
| 3    | 7551     | CSC     | UDS                       | GEN                                      | 7   |
| 4    | 7517     | UDS     | UDS                       | GEN                                      | 46  |

<sup>1.</sup> The stand is expected to develop into this condition in the five to ten years after this operation is completed.

According to the Forest Grove District's landscape design (Forest Grove District Implementation Plan, 2011), the desired future condition (DFC) for the sale area is 8% older forest structure (OFS), and 92% general (GEN). The vision for the DFC – OFS portion of this stand is to develop a complex forest structure as quickly as possible, creating habitat for older forest dependant wildlife species. The remainder of the sale area may be scheduled for a regeneration harvest in the future.

### V. PROPOSED MANAGEMENT PRESCRIPTION:

Table 6. Prescription

| Area | Harvest Type  | Harvest<br>Species | Residual<br>Species | Residual<br>TPA | Residual<br>BA | Residual<br>SDI |
|------|---------------|--------------------|---------------------|-----------------|----------------|-----------------|
| 1    | MC            | DF                 | DF,RA               | 5               | n/a            | n/a             |
| 2    | PC-M          | DF                 | DF, WH              | 45              | 140            | 35              |
| 3    | PC-M          | DF                 | DF, WH              | 45              | 140            | 35              |
| 4    | Snag Creation | n/a                |                     | n/a             | n/a            | n/a             |

<sup>2.</sup> Identify the cubic feet per acre of hard down wood (decay classes 1 and 2)

Table 7. Structural Components

|      |         |         |     |     |           | Arrangement |         |          |           |            |
|------|---------|---------|-----|-----|-----------|-------------|---------|----------|-----------|------------|
| Area | Purpose | Species | DBH | TPA | Scattered | Clumps      | In Unit | Adjacent | Green     | Down Wood  |
|      |         |         |     |     | in Unit   | in Unit     | RMA     | RMA      | Tree Area | (ft3/Acre) |
| 1    | GTR     | DF,RA   | 18  | 5   |           |             | X       |          | X         | None       |
| 2    | none    |         |     |     |           |             |         |          |           |            |
| 3    | none    |         |     |     |           |             |         |          |           |            |
| 4    | Snags   | DF      | 24  | 4   | X         |             |         |          |           |            |

This stand will most likely receive an additional silvicultural treatment in approximately 20 years. The older and larger trees at that time will provide a much better opportunity to address snag and DWD creation. Between now and then we will rely on natural recruitment of these structural components.

Table 8. Pathway

| Area | j       | Reforestation |     |     | nmercial<br>ming | Partial<br>Cut A | Partial<br>Cut B | Regeneration<br>Harvest |
|------|---------|---------------|-----|-----|------------------|------------------|------------------|-------------------------|
|      | Туре    | Species       | TPA | Age | TPA              | Age              | Age              | Age                     |
| 1    | initial | DF,WH,WRC     | 436 | 15  | 200              | 40               |                  | 60                      |
| 2    | n/a     |               |     |     |                  |                  | 80               |                         |
| 3    | n/a     |               |     |     |                  |                  |                  | 80                      |
| 4    | None    |               |     |     |                  |                  |                  |                         |

Table 9. Site Preparation

|      | •                  | Site Prep             |          |       |            |        | Other issues (Big Game, Mtn. Beavers, SNC, etc) |       |  |  |  |
|------|--------------------|-----------------------|----------|-------|------------|--------|-------------------------------------------------|-------|--|--|--|
| Area | Slash<br>Treatment | Whole Tree<br>Yarding | Chemical | Other | Vegetation | Animal | Insect &<br>Disease                             | Other |  |  |  |
| 1    |                    | X                     |          |       |            | TBD    |                                                 |       |  |  |  |
| 2    | n/a                |                       |          |       |            |        |                                                 |       |  |  |  |
| 3    | n/a                |                       |          |       |            |        |                                                 |       |  |  |  |
| 4    | None               |                       |          |       |            |        |                                                 |       |  |  |  |

### VI. HARVESTING AND ACCESS CONSIDERATIONS:

Table 10. Harvest System and Access Summary

| Δ #0.0 | Harves  | st System | Clama (0/) | Area   | Seasonal    |
|--------|---------|-----------|------------|--------|-------------|
| Area   | % Cable | % Ground  | Slope (%)  | Access | Access      |
| 1      | 40      | 60        | 35-65%     | Simple | All Weather |
| 2      | 30      | 70        | 20-65%     | Simple | All Weather |
| 3      | 100     |           | 55%        | Simple | Summer      |
| 4      | n/a     | n/a       |            |        |             |

| Are Easements required along haul route? ☐ YES               | NC NC |
|--------------------------------------------------------------|-------|
| If "yes", describe below easements that need to be obtained. |       |

Are property line surveys required for this operation? ☐ YES NO

If "yes", describe the lines to be surveyed, type of survey (i.e. section subdivision, refresh previously established line, etc.), and length of survey.

| Are Invasive Species present along the haul route?           | $\boxtimes$ YES | ☐ NO          |                    |
|--------------------------------------------------------------|-----------------|---------------|--------------------|
| If "yes", describe below the management actions necessary to | meet mana       | agement goals | for these species. |

Scotch broom is present along the haul route. The district treats scotch broom independently of timber sales.

Table 11. Transportation Management Summary (Miles or Number of Crossings)

| Activity         | Mainline | Collector | Rocked Spur | Dirt Spur |
|------------------|----------|-----------|-------------|-----------|
| Construct        |          |           | 1.2         |           |
| Improve          |          |           |             |           |
| Maintain         | 5.0      | 2.5       |             |           |
| Block (Dormant)  |          |           |             |           |
| Vacate           |          |           |             |           |
| Stream Crossings |          |           |             |           |
| Type F           |          |           |             |           |
| Type N           |          |           |             |           |

### VII. AQUATIC RESOURCES AND WATER QUALITY:

Table 12. Stream Classifications Within or Adjacent to the Operation

|      | Fish     | Operating in | 1       | Non-Fish Bea | ring (Type N | )     | Unknown - Fish   |
|------|----------|--------------|---------|--------------|--------------|-------|------------------|
| Area | Bearing  | Inner Zone   | Large / | Small        | H.E.R. /     | Other | Presence Surveys |
|      | (Type F) | of Type F    | Medium  | Perennial    | P.D.F.T      | Other | Required         |
| 1    |          |              |         | X            |              |       | none             |
| 2    | X        |              |         | X            |              |       |                  |
| 3    | X        |              |         | X            |              |       |                  |
| 4    | X        |              |         |              |              |       |                  |

Table 13. Additional Stream Considerations

| Area | SAH Basin                   | Potential Stream<br>Habitat Project | Domestic Water<br>Sources Present | Stream Name |
|------|-----------------------------|-------------------------------------|-----------------------------------|-------------|
| 1    | None                        | None                                | None                              | Gales Creek |
| 2    | Lousignont/Upper<br>Nehalem | None                                | None                              | South Fork  |
| 3    | None                        | None                                | None                              | Gales Creek |
| 4    | Lousignont/Upper<br>Nehalem | None                                | None                              | South Fork  |

### VIII. WILDLIFE AND T&E SPECIES CONSIDERATIONS:

Table 14. Northern Spotted Owls - Surveys and Presence

|      | L                                    | J                       |                               |              |
|------|--------------------------------------|-------------------------|-------------------------------|--------------|
| Area | NSO Surveys<br>Required <sup>1</sup> | Years Surveys Completed | Additional<br>Surveys Planned | NSO Response |
| 1    | Yes                                  | 2007, 2008, 2009,2010   | 2011                          | None         |
| 2    | Yes                                  | 2007, 2008, 2009,2010   | 2011                          | None         |
| 3    | Yes                                  | 2007, 2008, 2009,2010   | 2011                          | None         |
| 4    | Yes                                  | 2007, 2008, 2009,2010   | 2011                          | None         |

<sup>1.</sup> Surveys are required if the Area contains NSO habitat, as determined by Area Wildlife Biologist. Enter "Yes" or one of the following codes when surveys are not required: "N.H" – no habitat within the Area; "N.R." – surveys of individual operations are not required (Klamath-Lake District only); "T.B." – surveys are not required because the Area is within the Tillamook Burn (see NSO Policy); "HCP" – covered by a Habitat Conservation Plan; "S.W." – a survey waiver has been issue for another reason (explain below or attach the waiver).

Is the Operation within an NSO Provincial Circle or Home Range? 

YES NO If "yes", attached the preliminary Biological Assessment.

Table 15. Marbled Murrelets - Surveys and Presence

| Area | MM Surveys Are<br>Required <sup>1</sup> | Years Surveys<br>Completed | Additional<br>Surveys Planned | MM Observations |
|------|-----------------------------------------|----------------------------|-------------------------------|-----------------|
| 1    | SS                                      |                            |                               |                 |
| 2    | SS                                      |                            |                               |                 |
| 3    | SS                                      |                            |                               |                 |
| 4    | SS                                      | _                          |                               |                 |

<sup>1.</sup> Survey are required if the Area contains or is adjacent (within 330 feet) of potential marbled murrelet habitat, as determined by Area Wildlife Biologist. Enter "Yes", or one of the following codes when surveys are not required: "N.H." – no potential habitat within or adjacent to the Area; "O.Z." – outside the Marbled Murrelet Survey Zone; "S.S". – in Systematic Survey Zone; "T.C." – tree climbing was used (or planned) instead of the normal survey protocol; "HCP" – covered by a Habitat Conservation Plan; "S.W." – a survey waiver has been issue for another reason (explain below or attach the waiver).

Is the Operation within a Marble Murrelet Management Area? 

YES NO If "yes", attached the preliminary Biological Assessment.

Other Wildlife Considerations: None.

### T&E Fish:

Streams in this sale are in the headwaters of the Salmonberry, Nehalem River and Gales Creek basins. As of January 2011, Coho salmon in the Salmonberry and Nehalem River basins for the Oregon Coast and winter steelhead in the Gales Creek basin are listed as threatened for the Upper Willamette. However, the sale is located well upstream of actual distribution of listed fish.

### T&E Plants:

Does the Oregon Biodiversity Information Center database or field reconnaissance indicate the presence of known threatened or endangered plants near the operation? ☐ YES ☒ NO

### IX. SLOPE STABILITY AND GEOTECHNICAL ISSUES:

Table 16. Summary of Slope Stability Assessment<sup>1</sup>

|      |                          | Pot                         | we                          | æ                                  |             |                           |                              |
|------|--------------------------|-----------------------------|-----------------------------|------------------------------------|-------------|---------------------------|------------------------------|
| Area | Deep Seated<br>Landslide | HLHL –<br>Risk to<br>Stream | HLHL –<br>Risk to<br>Public | Debris Flow<br>Stream<br>(FPA/FMP) | Inner Gorge | Geotech Review<br>to Date | Additional<br>Geotech Review |
| 1    | L                        | L                           | N                           | NL                                 | L           | Office                    | None                         |
| 2    | L                        | L                           | N                           | NL                                 | L           | Office                    | None                         |
| 3    | L                        | L                           | N                           | NL                                 | L           | Office                    | None                         |
| 4    | n/a                      |                             |                             |                                    |             |                           |                              |

<sup>&</sup>lt;sup>1</sup> All assessments are based on the review conducted to date; additional field work by the Geotechnical Specialist (Geotech), foresters, or others may identify additional sites or risks that could lead to further evaluation or modification of the operation.

### X. RECREATION RESOURCES:

Table 17. Recreation Sites In the Vicinity of the Operation<sup>1</sup>

| Type of Recreation Site or Facility | In or Immediately<br>Adjacent to the<br>Operation | In the Vicinity of the Operation (1/4 mile) | On the Anticipated Haul<br>Route |
|-------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------------|
| Motorized Trails                    |                                                   |                                             |                                  |
| Non-Motorized Trails                | X                                                 |                                             |                                  |
| Campgrounds                         |                                                   |                                             | Reehers Camp                     |
| Other Recreation Sites or           |                                                   |                                             |                                  |
| Facilities                          |                                                   |                                             |                                  |

Raven Ridge Mountain Bike Trail and trailhead drop-off/turnaround is located immediately adjacent to the sale area boundary. Sale activity is not likely to impact the trail, trailhead, or trail use activity. Approximately 1,000 feet of the Gales Creek Trail runs through Area 3. Logging will be planned for outside of the high use summer months.

### XI. CULTURAL RESOURCES:

| Does the ODF Cultural Resources Inventor     | y or field | reconnaissance | indicate th | ne presence o | of cultural |
|----------------------------------------------|------------|----------------|-------------|---------------|-------------|
| resources in and adjacent to this operation? | YES        | $\boxtimes$ NO |             |               |             |

### XII. SCENIC RESOURCES:

The district has reviewed the scenic potential of vantage points in and around this operation. This review shows that this operation contain Areas with an ODF Visual Classification of  $\underline{2}$ .

The harvest prescriptions should have very little impact on scenic resources.

<sup>&</sup>lt;sup>2</sup> The potential hazards are rated as: Not Likely – additional action is not required, Likely – additional field review by forester or Geotech required, Present – specific hazards have been identified.

# XIII. OTHER RESOURCE CONSIDERATIONS:

Are there other resources present in or around this operation that need special consideration?  $\square$  YES  $\square$  NO



**Big Bell** PORTIONS OF SECTIONS 34, 35, T3N, R6W, & PORTIONS OF SECTIONS 1, 2, 3, T2N, R6W, W.M. **WASHINGTON COUNTY** 

# June 2011 This product is for informational use and may not be suitable for legal, engineering, or surveying purposes. 1:15,840

Forest Grove District GIS

1,300 1,300 Feet

### APPROXIMATE NET ACRES

AREA 1 105 ACRES (MC) AREA 2 ACRES (PC-M) AREA 3 ACRES (PC-M) ACRES (Snag Creation Only) AREA 4 TOTAL 323 ACRES

······ Non-motorized Trails



### PROJECT COST SUMMARY SHEET

Timber Sale:

Big Bell

Sale Number: 341-12-16

### PROJECT NO. 1: ROAD CONSTRUCTION

| Road Segment | Length | Cost       |
|--------------|--------|------------|
| A to B       | 11+85  | \$2,909.79 |
| C to D       | 19+00  | \$5,416.03 |
| E to F       | 16+75  | \$5,321.90 |
| G to H       | 2+20   | \$720.13   |
| I to J       | 22+75  | \$7,294.07 |
|              | 72+55  | stations   |
|              | 1.37   | miles      |

### TOTAL PROJECT NO. 1 COST =

\$21,661.92

### **PROJECT NO. 2: SURFACING**

| Road Segment | Amount   | Туре       | Cost        |
|--------------|----------|------------|-------------|
| A to B       | 832 cy   | 6" - 0     | \$6,223.36  |
| C to D       | 45 cy    | 1 1/2" - 0 | \$457.20    |
| C to D       | 1,523 cy | 6" - 0     | \$10,614.26 |
| E to F       | 50 cy    | 6" - 0     | \$407.50    |
| G to H       | 303 cy   | 6" - 0     | \$1,966.47  |
| Total        | 45 cy    | 1 1/2" - 0 |             |
|              | 2,708 cy | 6" - 0     |             |

### TOTAL PROJECT NO. 2 COST =

\$19,668.79

### PROJECT NO. 3: GRASS SEED, FERTILIZE, & MULCH

Grass seed and fertilize \$366.41 Mulch. \$36.00

> TOTAL PROJECT NO. 3 COST = \$402.41

### PROJECT NO. 4: VACATING

Road vacating E to F and I to J \$2,939.72

> TOTAL PROJECT NO. 4 COST = \$2,939.72

**MOVE IN & EQUIPMENT CLEANING** \$6,024.21

**TOTAL ALL PROJECTS** 

\$50,697.05 \$50,700.00

**TOTAL CREDITS** 

|                          |                   |               | SUMIN   | ARY OF C            | ONSTRUCTI    | ON COST           |                   |                   |                |  |
|--------------------------|-------------------|---------------|---------|---------------------|--------------|-------------------|-------------------|-------------------|----------------|--|
| Timber Sale:             |                   | Big Bell      |         |                     | Timber       | Sale No. :        | 341-1             | 12-16             |                |  |
| Road Segment             |                   | A to B        |         | A to B Construction |              |                   |                   | nstruction:       | 11+85 stations |  |
| _                        |                   |               |         | <del></del>         |              |                   | 0.22 miles        |                   |                |  |
| PROJECT NO.              | 1                 |               |         |                     |              |                   |                   |                   |                |  |
| EXCAVATION               |                   |               |         |                     |              |                   |                   |                   |                |  |
| Clearing and Grubbing    | _<br>(Scatter)    |               |         | 0.54 acre           | s@. \$980.00 | per acre =        | \$533.20          |                   |                |  |
| Balanced Road Constru    |                   |               | 1       | 1.85 st             | a@ \$90.00   | per sta =         | \$1,066.50        |                   |                |  |
| Construct Turnouts (1)   |                   |               |         | 1 e                 | a@ \$60.00   | per ea =          | \$60.00           |                   |                |  |
| Construct Turnaround (   | (1)               |               |         | 1 e                 | a@ \$75.00   | per ea =          | \$75.00           |                   |                |  |
| Landing                  | , ,               |               |         | 1 e                 | a @ \$285.00 | per ea =          | \$285.00          |                   |                |  |
| Grade, Ditch, and Roll   |                   |               | 1       | 1.85 st             | a@ \$28.70   | per sta =         | \$340.10          |                   |                |  |
|                          |                   |               |         |                     |              | TOTAL E           | XCAVATION COSTS=  | \$2,359.79        |                |  |
| CULVERTS - MAT           | TERIALS 8         | R INSTALL     | ATION.  | <u> </u>            |              |                   |                   |                   |                |  |
| Culverts                 |                   |               |         |                     |              |                   |                   |                   |                |  |
| 30                       | 0 <b>LF</b> of 18 | 8" \$540.00   |         |                     |              |                   |                   |                   |                |  |
| Culvert Ma               | rkers             |               |         |                     |              |                   |                   |                   |                |  |
| - +                      | 1 markers         | \$10.00       |         |                     |              |                   |                   |                   |                |  |
|                          |                   |               | _       |                     |              | TOTA              | L CULVERT COSTS = | \$550.00          |                |  |
|                          |                   |               |         |                     | PROJECT      |                   | OTAL COST =       | \$2,909.79        |                |  |
|                          |                   |               |         |                     | i itobeo.    | 110               | • · · · ·         | Ψ2,000.70         |                |  |
| PROJECT NO.              | 2.                |               |         |                     |              |                   |                   |                   |                |  |
| SURFACING                |                   | o" deep =     | 53 cy/s | ta                  |              |                   |                   |                   |                |  |
| A to B                   | 628               | cy of         | 6" - 0  | @                   | \$7.48       | per cy =          | \$4,697.44        |                   |                |  |
| Turnouts (1)             | 18                | cy of         | 6" - 0  | @                   | \$7.48       | per cy =          | \$134.64          |                   |                |  |
| Turnaround (1)           | 16                | cy of         | 6" - 0  | œ                   | \$7.48       | per cy =          | \$119.68          |                   |                |  |
| Junction                 | 20                | cy of         | 6" - 0  | œ                   | \$7.48       | per cy =          | \$149.60          |                   |                |  |
| Landing (1)              | 150               | cy of         | 6" - 0  | @                   | \$7.48       | per cy =          | \$1,122.00        |                   |                |  |
| Total                    | =                 |               |         |                     |              |                   |                   |                   |                |  |
|                          | 832               | cy of         | 6" - 0  |                     |              |                   |                   |                   |                |  |
|                          |                   |               |         |                     | DDO IECT     | NO 2 T            | OTAL COST =       | \$6,223.36        |                |  |
|                          |                   |               |         |                     | PROJECT      | 140.21            | OTAL COST -       | <b>ֆ0,∠∠</b> ა.ა0 |                |  |
| DDO IEOT NO              |                   |               |         |                     |              | ,                 |                   |                   |                |  |
| PROJECT NO.              |                   |               |         |                     |              |                   |                   |                   |                |  |
| Grass seed and fertilize | e areas of dis    | sturbed soil. |         | 0.27 acres @        | =            | per acre =        | \$59.85           |                   |                |  |
|                          |                   |               |         |                     | PROJEC1      | Г <b>N</b> O. 3 Т | OTAL COST =       | \$59.85           |                |  |
|                          |                   |               |         |                     |              | T/\               | TAL COST =        | ¢0.103.00         |                |  |
|                          |                   |               |         |                     |              | 10                | TAL COST =        | \$9,193.00        |                |  |
|                          |                   |               |         |                     |              |                   | -                 |                   |                |  |

Timber Sale: Big Bell Timber Sale No.: 341-12-16 C to D Road Segment: Construction: 19+00 stations 0.36 miles PROJECT NO. 1 EXCAVATION Clearing and Grubbing (Scatter) 0.87 acres @ \$980.00 per acre = \$854.91 Balanced Road Construction 19.00 sta.@ \$90.00 persta = \$1,710.00 Construct Turnouts (2) 2 ea@ \$60.00 perea= \$120.00 Construct Turnaround (1) 1 ea@ \$75.00 perea = \$75.00 ea@ \$575.82 persta.= \$575.82 Landing with 245' Approach \$150,00 perea.= \$150.00 Landing (Roadside) ea.@ \$285.00 perea = \$285.00 Landing 1 ea.@ \$28,70 persta = \$545.30 Grade, Ditch, and Roll 19.00 sta.@ TOTAL EXCAVATION COSTS= \$4,316.03 CULVERTS - MATERIALS & INSTALLATION Culverts LF of 18" \$1,080.00 60 Culvert Markers 2 markers \$20.00 TOTAL CULVERT COSTS = \$1,100.00 PROJECT NO. 1 TOTAL COST = \$5,416.03 PROJECT NO. 2: SURFACING 10 53 cy/sta "deep = Cto D Base Rock 941 cy of ธ" - D @ \$6.97 percy= \$6,558,77 C to D Surfacing Lift 11/2" - 0 cy of 11/2" - 0 \$10.16 percy= \$457.20 45 @  $6^{n} - 0$ \$6.97 percy= \$250.92 Turnouts (2) 36 @ cy of 6" - 0 \$6.97 percy= \$111.52 Turnaround (1) @ 16 cy of 6" - 0 @ \$6.97 percy= \$139.40 20 Junction cy of 150 8" - 0 **(**@ \$6.97 percy= \$1,045.50 Landing (1) cy of 280 @ \$6.97 percy= \$1,950.55 Landing with 245' Approac cy of 6"-0 6" - 0 \$6.97 percy= \$557.60 80 Landing (Roadside) cy of Total = 11/2" - 0 45 cy of 6" - 0 1523 cy of PROJECT NO. 2 TOTAL COST = \$11,071.46 PROJECT NO. 3: Grass seed and fertilize areas of disturbed soil. 0.44 acres @ \$220.00 per acre = PROJECT NO. 3 TOTAL COST = \$95.96 TOTAL COST = \$16.583.45

| Timber Sale:               | Big Bell                |        |                    | Timber Sale N     | o.: 341-                                                | 12-16         |
|----------------------------|-------------------------|--------|--------------------|-------------------|---------------------------------------------------------|---------------|
| Road Segment: E to F       |                         |        | -<br>Construction: |                   | on: 16+75 stations                                      |               |
| ·                          | ·                       |        |                    |                   | 0.32 miles                                              |               |
| PROJECT NO. 1              |                         |        |                    |                   |                                                         |               |
| EXCAVATION                 |                         |        |                    |                   |                                                         |               |
| Clearing and Grubbing (S   |                         | 0.77   | a.cres @           | \$980.00 peracra  |                                                         |               |
| Balanced Road Construc     | ction                   | 14.75  | sta.@              | \$90.00 persta:   |                                                         |               |
| Drift                      |                         | 2.00   | sta @              | \$150.00 persta:  |                                                         |               |
| Construct Turnaround (1)   |                         | 1      | ea.⊚               | \$75.00 perea.=   |                                                         |               |
| Landing<br>Landing         |                         | 2<br>1 | ea @               | \$150.00 perea =  |                                                         |               |
| Grade, Ditch, and Roll     |                         | 16.75  | ea.@<br>sta.@      | \$285.00 perea =  |                                                         |               |
| Cirade, pilcii, and rion   |                         | 10.75  | sia (g             | \$28.70 persta =  | <ul> <li>\$480.73</li> <li>EXCAVATION COSTS=</li> </ul> |               |
| CULVERTS - MATE            | RIALS & INSTALLATI      | ON     |                    | IOIAL             | LACAVATION COSTS=                                       | \$3,521.90    |
| Culverts                   |                         |        |                    |                   |                                                         |               |
| 100                        | LF of 18" \$1,800.00    |        |                    |                   |                                                         |               |
|                            |                         |        |                    |                   | TAL CULVERT COSTS =                                     | \$1,800.00    |
|                            |                         |        | PRe                | OJECT NO. 1       | TOTAL COST =                                            | \$5,321.90    |
|                            |                         |        |                    |                   |                                                         | -             |
| PROJECT NO. 2              | :                       |        |                    |                   |                                                         |               |
| SURFACING                  |                         |        |                    |                   |                                                         |               |
| Subgrade Reiforcemer       | 50 cy of 6"-(           | 1      | @                  | \$8.15 percy=     | \$407.50                                                |               |
| Total =                    | 50 cyof 6"-(            | 1      |                    |                   | e.                                                      |               |
|                            | 50 Cy O1 8 - (          | ı      |                    |                   |                                                         |               |
| -                          |                         |        | PRO                | OJECT NO. 2       | TOTAL COST =                                            | \$407.50      |
| PROJECT NO. 3              | -                       |        |                    |                   |                                                         |               |
| Grass seed and fertilize a |                         | 0.38   | acres @            | \$220.00 peracre  | = \$84.60                                               |               |
|                            |                         |        | םם כ               | •                 | TOTAL COST =                                            | <b>#04.00</b> |
|                            |                         |        | rnv                | OUECT NO. 3       | TOTAL COST =                                            | \$84.60       |
| PROJECT NO. 4              | :                       |        |                    |                   |                                                         |               |
| Grass seed and fertilize a | reas of disturbed soil. | 0.62   | acres @            | \$220.00 per acre | = \$135.35                                              |               |
| Mulch                      |                         | 0.62 a | acres @            | \$600.00 per acre |                                                         |               |
| Construct waterbars        |                         |        | each @             | \$25.00 pereact   |                                                         |               |
| Construct tank trap        |                         |        | each @             | \$50.00 pereact   | •                                                       |               |
| Remove culverts            |                         | 3.00 e | each @             | \$150.00 peread   | n = \$450.00                                            |               |
|                            |                         |        | PRO                | OJECT NO. 4       | TOTAL COST =                                            | \$1,454.50    |
|                            |                         |        |                    |                   |                                                         |               |
|                            |                         |        |                    | TO                | DTAL COST =                                             | \$7,268.49    |
|                            |                         |        |                    |                   |                                                         | Ψ1,200.70     |

| Timber Sale:               | Big Bell     |             |                  |                                         | Timber Sale No. : _ |          |              |          | 341-1                | 2-16       |
|----------------------------|--------------|-------------|------------------|-----------------------------------------|---------------------|----------|--------------|----------|----------------------|------------|
| Road Segment:              | G to H       |             |                  |                                         |                     | Co       | onstruction: | 2+20     | stations             |            |
| <del>-</del>               |              |             |                  |                                         |                     |          |              | 0.04     | miles                |            |
| PROJECT NO. 1              |              |             |                  |                                         |                     |          |              |          |                      |            |
| EXCAVATION                 |              |             |                  |                                         |                     |          |              | •        |                      |            |
| Clearing and Grubbing (S   | catter)      |             |                  | 0.10                                    | acres @             | \$980.00 | per acre =   |          | \$98.99              |            |
| Balanced Road Construct    |              |             |                  | 2.20                                    | sta @               |          | per sta =    |          | \$198.00             |            |
| Construct Turnaround (1)   |              |             |                  | 1                                       | ea@                 | \$75.00  | per ea =     |          | \$75.00              |            |
| Landing                    |              |             |                  | 1                                       | ea @                |          | per ea =     |          | \$285.00             |            |
| Grade, Ditch, and Roll     |              |             |                  | 2.20                                    | sta @               | \$28.70  | per sta =    |          | \$63.14              |            |
|                            |              |             |                  |                                         | PF                  | ROJECT   | NO. 1 T      | OTAL     | COST =               | \$720.13   |
| PROJECT NO. 2              |              | 2 · .       |                  | ******                                  |                     |          |              |          |                      |            |
| SURFACING                  | 10           | " deep =    | 53 cy/           | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                     | 4        |              |          |                      |            |
| G to H                     | 117          | cy of       | 6" - 0           | @                                       |                     |          | per cy =     |          | \$759.33             |            |
| Turnaround (1)             | 16           | cy of       | 6" - 0           | @                                       |                     |          | per cy =     |          | \$103.84             |            |
| Junction                   | 20<br>150    | cy of       | 6" - 0<br>6" - 0 | @                                       |                     |          | per cy =     |          | \$129.80<br>\$073.50 |            |
| Landing (1)<br>Total =     | 100          | cy of       | 0 - 0            | @                                       | <u> </u>            | \$0.49   | per cy =     |          | \$973.50             |            |
| Total -                    | 303          | cy of       | 6" - 0           |                                         |                     |          |              |          |                      |            |
|                            |              |             |                  |                                         | PF                  | ROJECT   | NO. 2 T      | OTAL     | COST = _             | \$1,966.47 |
| PROJECT NO. 3              | 3:           |             |                  |                                         |                     |          |              |          |                      |            |
| Grass seed and fertilize a | reas of dist | urbed soil. |                  | 0.05 ac                                 | cres @              | \$220.00 | per acre =   | <u>.</u> | \$11.11              |            |
|                            |              |             |                  |                                         | PF                  |          | NO. 3 T      | OTAL     | COST =               | \$11.11    |
| <del> </del>               |              |             |                  |                                         | <u>.</u>            |          | TO           | TAI /    | COST =               | \$2,697.7  |

| Timber Sale:                      | Big Bell             |         | Timber Sale No. :    | 341-12-16                    |            |  |
|-----------------------------------|----------------------|---------|----------------------|------------------------------|------------|--|
| Road Segment:                     | l to J               |         | Construction:        | 22+75 stations<br>0.43 miles |            |  |
| PROJECT NO. 1                     |                      |         |                      |                              |            |  |
| EXCAVATION                        |                      |         |                      |                              |            |  |
| Clearing and Grubbing (Scatter)   | 1.04                 | acres @ | \$980.00 per acre =  | \$1,023.65                   |            |  |
| Balanced Road Construction        | 14.75                | sta @   | \$90.00 persta =     | \$1,327.50                   |            |  |
| Drift                             | 8.00                 | sta @   | \$150.00 per sta =   | \$1,200.00                   |            |  |
| Construct Turnouts (2)            | 2                    | ea @    | \$60.00 per ea =     | \$120.00                     |            |  |
| Construct Turnaround (1)          | 1                    | ea @    | \$75.00 perea =      | \$75.00                      |            |  |
| Landing                           | 1                    | ea @    | \$150.00 perea =     | \$150.00                     |            |  |
| Landing                           | 1                    | ea@     | \$285.00 per ea =    | \$285.00                     |            |  |
| Grade, Ditch, and Roll            | 22.75                | sta @   | \$28.70 per sta =    | \$652.93                     |            |  |
| OUR VEDTO MATERIALO               |                      |         | TOTAL EX             | XCAVATION COSTS=             | \$4,834.07 |  |
| CULVERTS - MATERIALS              | 8 & INSTALLATION     |         |                      |                              |            |  |
| Culverts                          |                      |         |                      |                              |            |  |
| 70 LF of                          | 18" \$1,260.00       | 50      | LF of 24" \$1,200.00 |                              |            |  |
|                                   |                      |         | TOTAI                | L CULVERT COSTS =            | \$2,460.00 |  |
|                                   |                      | PE      | ROJECT NO. 1 To      | OTAL COST =                  | \$7,294.07 |  |
|                                   |                      | • •     | COULDI MO. 1 I       | -                            | Ψ1,237.01  |  |
| PROJECT NO. 3:                    |                      |         |                      |                              |            |  |
| Grass seed and fertilize areas of | disturbed soil. 0.52 | acres @ | \$220.00 per acre =  | \$114.90                     |            |  |
| Mulch                             |                      | acres @ | \$600.00 per acre =  | \$36.00                      |            |  |
|                                   |                      | DE      | ROJECT NO. 3 T       | OTAL COST =                  | ¢450.00    |  |
|                                   |                      | Fr      | COJECT NO. 3 T       | OTAL COST -                  | \$150.90   |  |
| PROJECT NO. 4:                    | ,                    |         |                      |                              |            |  |
| Grass seed and fertilize areas of | disturbed soil. 0.84 | acres @ | \$220.00 per acre =  | \$183.84                     |            |  |
| Mulch                             |                      | acres @ | \$600.00 per acre =  | \$501.38                     |            |  |
| Construct waterbars               |                      | each @  | \$25.00 per each =   | \$300.00                     |            |  |
| Construct tank trap               | 1.00                 | each @  | \$50.00 per each =   | \$50.00                      |            |  |
| Remove culverts                   | 3.00                 | each @  | \$150.00 per each =  | \$450.00                     |            |  |
|                                   |                      | PF      | ROJECT NO. 4 T       | OTAL COST = _                | \$1,485.22 |  |
|                                   |                      |         | TO                   | TAL COST =                   | \$8,930.19 |  |

# Move-In & Equipment Cleaning

Timber Sale: Sale Number:

Big Bell 341-12-06

| LOWE     | LOWBOY HAUL | (Round Trip) |
|----------|-------------|--------------|
| DIST.    | 0           | AVE SPEED    |
| (mi)     | Z Y         | (hdm)        |
| TI<br>Cr | Main        | 7            |
| ני       | Lines       |              |
| 2.0      | Steep       | 2            |
| ,<br>,   | Grades      | 1            |

|               |                                    |           |          |          |               | Within |         |         |        | Within |            |
|---------------|------------------------------------|-----------|----------|----------|---------------|--------|---------|---------|--------|--------|------------|
|               | EQUIPMENT                          | Equipment | Base     | Woods    | Pilot         | ø      | Begin   | End     | Total  | Area   | Total      |
| ટ્ર           |                                    | Cleaning  | Cost     | Cost     | Cars          | _      | Mileage | Mileage | Miles  | Cost   | Cost       |
| 0             | Drill & Compressor                 |           | \$0.00   | \$0.00   |               |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |
| 0             | Brush Cutter                       |           | \$0.00   | \$0.00   |               |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |
| Ħ             | Graders                            |           | \$300.00 | \$250.72 |               |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$550.72   |
| 0             | Loader (Small)                     |           | \$0.00   | \$0.00   | ⊣             |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |
| +1            | Loader (Med. & Large)              |           | \$414.39 | \$331,57 | <del></del>   |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$745.96   |
| <del></del> 1 | Rollers (smooth/grid) & Compactors |           | \$308.59 | \$207,00 |               |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$515.59   |
| 0             | Excavators (Small)                 |           | \$0.00   | \$0.00   |               |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |
| 0             | Excavators (Med.)                  |           | \$0.00   | \$0.00   |               |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |
| =1            | Excavators (Large)                 | \$1,000   | \$466,14 | \$385.91 | ┯             |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$1,852.05 |
| 0             | Tired Backhoes/Skidders            |           | \$0.00   | \$0.00   |               |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |
| 0             | Tractors (D6)                      |           | \$0.00   | \$0.00   | 7             |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |
| 0             | Tractors (D7)                      |           | \$0.00   | \$0.00   | 7             |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |
| <del></del> 1 | Tractor (D8)                       | \$1,000   | \$473.80 | \$353.71 | 7             |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$1,827.51 |
| 7             | Dump Truck (10 cy +)               |           | \$233.34 | \$145,00 |               |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$378.34   |
| 0             | Dump Truck (Off Hiway)             |           | \$0.00   | \$0.00   | <del></del> 1 |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |
| <del></del> 1 | Water Truck (1500 Gal)             |           | \$95.00  | \$59.04  |               | \$2,85 | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$154,04   |
| 0             | Water Truck (2500 Gal)             |           | \$0.00   | \$0.00   |               |        | \$0.00  | \$0.00  | \$0.00 | \$0.00 | \$0.00     |

TOTAL MOVE-IN COSTS:

# ROCK DEVELOPMENT COST SUMMARY

Timber Sale:

Big Bell

Sale Number:

341-12-06

Pit Name:

Beligrade Pit

| Swell:             | 1.30          |                   | Pit Run (trk me  | asure)     | 2,708 cy          |
|--------------------|---------------|-------------------|------------------|------------|-------------------|
| Shrinkage:         | 1.16          |                   | Total Truck Yar  | dage:      | 2,708 cy          |
| Drill Pct.:        | 100%          |                   | Total In Place ` | /ardage: _ | 2,083 cy          |
| On miles 0. Ole O  | d d           |                   |                  |            |                   |
| Scalp & Clear Over | puraen:       |                   |                  |            | \$1,500.00        |
| Rip Rock:          | _             | \$1.90_/cy_x      | 2,083 cy         | =          | \$3,957.63        |
| Load Dump Truck:   |               | \$0.70_/cy_x      | 2,708 cy         | = _        | \$1,895.50        |
|                    |               |                   |                  | Subtotal   | \$7,353.12        |
|                    |               |                   |                  |            |                   |
| Equipment Cleanin  | ng            |                   |                  |            | \$1,000.00        |
| Move in Excavator  |               |                   |                  |            | \$853.53          |
| Clean Up Pit       |               |                   |                  | _          | \$300.00          |
|                    |               |                   |                  | Subtotal   | \$2,153.53        |
| DIT DEV            | ELOPMENT COST | <b>¢</b> 0 E1 lov | TOTAL DDODUCT    | ION OOCT   | <b>ΦΟ ΕΔΟ Ο</b> Ε |
| PITUEVE            | ELOFMENT COST | \$3.51/cy         | TOTAL PRODUCT    | - 1200 NO  | \$9,506.65        |

### CRUISE REPORT Big Bell 341-12-06

**1. ACREAGE CALCULATION:** Area 1 is 112 acres, Area 2 is 177 acres, and Area 3 is 8 acres. Acres were determined with ESRI ArcMap GIS Software. Acres are net of stream buffers, leave areas, and existing roads.

### 2. SAMPLING INTENSITY:

Area 1: (Cruise Type 0001) In 2005, was cruised with 20 Stand Level Inventory variable radius plots with a total of 115 measured trees. The Super Ace-generated cruise statistics report indicates that the Coefficient of Variation is 38.5% and the cumulative sampling error is an acceptable 8.8%. This cruise appears to have adequately sampled the stand so no additional plots were necessary.

Areas 2 and 3: (Cruise Type 0002) The cruise design assumed a Coefficient of Variation (CV%) of 48%, an average stand diameter of 15 inches, a desired sampling error (SE%) of 9%. The Sale Areas were cruised in September 2011 with 18 variable radius (grade) plots and 18 variable radius count plots. 74 trees were measured and graded. This produced an acceptable cumulative sampling error of 10.4%.

Area 5: Right-of-Way volume was derived from the total stand volume of Area 2 Cruise.

### 3. TREE MEASUREMENT AND GRADING:

All grade plot "Take" trees were measured and graded following Columbia River Log Scale grade rules and favoring 40 foot segments.

- a) Height Standards:
  - Total tree heights were measured to the nearest foot. Bole heights were calculated to a six inch top.
- b) **Diameter Standards:** Diameters were measured outside bark at breast height to the nearest inch.
- c) **Form Factors** were measured for each grade tree using a form point of 16 feet.

### 4. DATA PROCESSING

- a) Volumes and Statistics: Cruised and grown forward volume estimates, and sampling statistics, were derived from Super Ace 2008 cruise software. (Plot data was grown forward to September 2011).
- b) **Deductions:** Area 1 Two percent of the volume was subtracted from the computed volumes to account for hidden defect and breakage.

| Prepared by: |             |      |
|--------------|-------------|------|
| ,            | Peter Stone | Date |
| Reviewed by: |             |      |
| ·            | Eric Foucht | Date |

**5. Cruisers:** The sale was cruised by SLI contract and ODF cruisers.

| TC TST                                                                                                  | `ATS                                                                                                                                                                                                               |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                  | S]<br>PROJE                                                                                         | FATIST<br>CT                                                                                                      | ICS<br>BIGBELL2                                                          |                |                                                            |                                                                                       | 1<br>2/26/2011                                                |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------|------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------|
| TWP                                                                                                     | RGE                                                                                                                                                                                                                | SECT                                                                              | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ACT                                                                                      |                  | TYPE                                                                                                |                                                                                                                   | RES                                                                      | PLOTS          | TREES                                                      | CuFt                                                                                  | BdFt                                                          |
| 03N                                                                                                     | 06W                                                                                                                                                                                                                | 02                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                  | 0001                                                                                                |                                                                                                                   | 112.00                                                                   | 19             | 112                                                        | S                                                                                     | W                                                             |
|                                                                                                         |                                                                                                                                                                                                                    |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                  | TREES                                                                                               | ]                                                                                                                 | ESTIMATED<br>FOTAL                                                       |                | ERCENT<br>AMPLE                                            |                                                                                       |                                                               |
|                                                                                                         |                                                                                                                                                                                                                    | PLOTS                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TREES                                                                                    |                  | PER PLO                                                                                             |                                                                                                                   | TREES                                                                    |                | REES                                                       |                                                                                       |                                                               |
| TOTA                                                                                                    | AT.                                                                                                                                                                                                                | 19                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112                                                                                      |                  | 5.9                                                                                                 | -                                                                                                                 |                                                                          |                |                                                            |                                                                                       |                                                               |
| CRUI<br>DBH<br>REFO<br>COU                                                                              | SE<br>COUNT<br>DREST<br>NT<br>VKS                                                                                                                                                                                  | 19                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112                                                                                      |                  | 5.9                                                                                                 |                                                                                                                   | 18,922                                                                   |                | .6                                                         |                                                                                       |                                                               |
|                                                                                                         |                                                                                                                                                                                                                    |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | STA              | ND SUM                                                                                              | MARY                                                                                                              |                                                                          |                |                                                            |                                                                                       |                                                               |
|                                                                                                         |                                                                                                                                                                                                                    | SAMPLI<br>TREES                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TREES<br>/ACRE                                                                           | AVG<br>DBH       | BOLE<br>LEN                                                                                         | REL<br>DEN                                                                                                        | BASAL<br>AREA                                                            | GROSS<br>BF/AC | NET<br>BF/AC                                               | GROSS<br>CF/AC                                                                        | NET<br>CF/AC                                                  |
| DOU                                                                                                     | G FIR-T                                                                                                                                                                                                            | 1                                                                                 | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 164.5                                                                                    | 14.7             | 91                                                                                                  | 50.4                                                                                                              | 192.8                                                                    | 27,712         | 27,712                                                     | 6,509                                                                                 | 6,509                                                         |
| R AL                                                                                                    | DER-T                                                                                                                                                                                                              |                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5                                                                                      | 14.7             | 71                                                                                                  | 1.4                                                                                                               | 5.3                                                                      | 546            | 546                                                        | 143                                                                                   | 143                                                           |
|                                                                                                         |                                                                                                                                                                                                                    |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                  |                                                                                                     |                                                                                                                   |                                                                          |                |                                                            |                                                                                       |                                                               |
| CON                                                                                                     | AL                                                                                                                                                                                                                 |                                                                                   | 12<br>OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>168.9</i><br>THE SAMPI                                                                | <i>14.7</i><br>Æ | 91                                                                                                  | 51.7                                                                                                              | 198.1                                                                    | 28,258         | 28,258                                                     | 6,652                                                                                 | 6,652                                                         |
| CON                                                                                                     | AL<br>FIDENC<br>68.1                                                                                                                                                                                               | E LIMITS<br>TIMES C                                                               | OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THE SAMPI                                                                                | Æ                | WILL B                                                                                              | E WITHIN                                                                                                          | THE SAMP                                                                 | LE ERROR       |                                                            |                                                                                       |                                                               |
| CON                                                                                                     | AL<br>FIDENC<br>68.1<br>68.1 %                                                                                                                                                                                     | E LIMITS<br>TIMES C                                                               | OF TOUT C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THE SAMPI<br>OF 100 THE                                                                  | E<br>VOLUME      | WILL B                                                                                              | E WITHIN                                                                                                          | THE SAMP                                                                 | LE ERROR       | OF TREES                                                   | REQ.                                                                                  | INF. POP.                                                     |
| CON                                                                                                     | AL<br>FIDENC<br>68.1<br>68.1 %<br>1.0                                                                                                                                                                              | E LIMITS<br>TIMES C<br>CO<br>VA                                                   | OF TOUT CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THE SAMPI<br>OF 100 THE<br>S.E.%                                                         | E<br>VOLUME      | WILL B<br>SAMPI<br>OW                                                                               | E WITHIN<br>L <b>E TREE!</b><br>AVG                                                                               | THE SAMP<br>S - BF<br>HIGH                                               | LE ERROR       |                                                            |                                                                                       | INF. POP.                                                     |
| CON<br>CL:<br>SD:                                                                                       | FIDENC<br>68.1<br>68.1 %<br>1.0<br>G FIR-T                                                                                                                                                                         | E LIMITS TIMES C CO VA                                                            | OF TOUT COEFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | THE SAMPI<br>OF 100 THE                                                                  | E<br>VOLUME      | WILL B                                                                                              | E WITHIN                                                                                                          | THE SAMP                                                                 | LE ERROR       | OF TREES                                                   | REQ.                                                                                  |                                                               |
| CON<br>CL:<br>SD:                                                                                       | FIDENCE<br>68.1<br>68.1 %<br>1.0<br>G FIR-T<br>DER-T                                                                                                                                                               | E LIMITS<br>TIMES C<br>CO<br>VA<br>80                                             | OF TOUT CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THE SAMPL<br>DF 100 THE<br>S.E.%<br>7.7                                                  | E<br>VOLUME      | WILL BE                                                                                             | E WITHIN LE TREES AVG 285                                                                                         | THE SAMP                                                                 | LE ERROR       | OF TREES                                                   | REQ.                                                                                  | INF. POP.                                                     |
| CCN CL: SD: DOUG                                                                                        | FIDENCE<br>68.1<br>68.1 %<br>1.0<br>G FIR-T<br>DER-T<br>AL                                                                                                                                                         | E LIMITS<br>TIMES C<br>CO<br>VA<br>86                                             | OF TOUT OF THE O | S.E.%<br>7.7<br>33.8                                                                     | E<br>VOLUME      | WILL B.  SAMPI  OW  263  88  259                                                                    | E WITHIN LE TREES AVG 285 133                                                                                     | THE SAMP<br>8 - BF<br>HIGH<br>306<br>178                                 | LE ERROR<br>#  | OF TREES<br>5<br>260                                       | 65 REO.                                                                               | INF. POP.<br>15                                               |
| CL:<br>SD:<br>DOUG<br>R AL:<br>TOT.                                                                     | FIDENC. 68.1 68.1 % 1.0 G FIR-T DER-T AL 68.1 %                                                                                                                                                                    | E LIMITS TIMES CO VA 80 44 80                                                     | OF TOUT OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S.E.%<br>7.7<br>33.8                                                                     | E<br>VOLUME<br>L | WILL B.  SAMPI  OW  263  88  259                                                                    | E WITHIN  LE TREES  AVG  285  133  281                                                                            | THE SAMP<br>8 - BF<br>HIGH<br>306<br>178                                 | LE ERROR<br>#  | OF TREES<br>5                                              | 65 REO.                                                                               | INF. POP. 15                                                  |
| CL:<br>SD:<br>DOUG<br>R ALZ<br>TOTZ<br>CL:<br>SD:                                                       | 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0                                                                                                                                                                             | E LIMITS CO VA 80 40 80 CO VA                                                     | OF TOUT OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S.E.%<br>7.7<br>33.8<br>7.6                                                              | E<br>VOLUME<br>L | WILL B:  SAMPI  OW  263  88  259  TREES                                                             | E WITHIN LE TREES AVG 285 133 281                                                                                 | THE SAMP<br>8 - BF<br>HIGH<br>306<br>178<br>302                          | LE ERROR<br>#  | OF TREES 5  260 OF PLOTS                                   | 65 REO.                                                                               | INF. POP. 15                                                  |
| CL:<br>SD:<br>DOUG<br>R ALL<br>TOT.<br>CL:<br>SD:<br>DOUG<br>R AL.                                      | 68.1 % 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T T.0 G FIR-T DER-T                                                                                                                                      | E LIMITS CO VA 86 CO VA 66 30:                                                    | OF TOUT OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S.E.% 7.7 33.8 7.6 S.E.% 16.2 71.4                                                       | E<br>VOLUME<br>L | SAMP)  OW  263  88  259  TREES  OW  138  1                                                          | E WITHIN  LE TREES  AVG  285  133  281  S/ACRE  AVG  164  4                                                       | THE SAMPI<br>8 - BF<br>HIGH<br>306<br>178<br>302<br>HIGH<br>191<br>8     | LE ERROR<br>#  | OF TREES 5  260  OF PLOTS 5                                | 65 REO.                                                                               | INF. POP.<br>15<br>29<br>INF. POP.<br>15                      |
| CL:<br>SD:<br>DOUG<br>R ALL<br>TOTA<br>CL:<br>SD:                                                       | 68.1 % 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T T.0 G FIR-T DER-T                                                                                                                                      | E LIMITS CO VA 86 CO VA 66 30:                                                    | OF TOUT OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S.E.%  S.E.%  7.7  33.8  7.6  S.E.%  16.2                                                | E<br>VOLUME<br>L | WILL B:  SAMPI  OW  263  88  259  TREES  OW  138                                                    | E WITHIN  LE TREES  AVG  285  133  281  6/ACRE  AVG  164                                                          | THE SAMP<br>8 - BF<br>HIGH<br>306<br>178<br>302<br>HIGH<br>191           | LE ERROR<br>#  | OF TREES 5  260 OF PLOTS                                   | 65 REO.                                                                               | INF. POP.<br>15<br>29<br>INF. POP.                            |
| CON  CL: SD: DOUG R ALZ TOTZ  CL: SD: DOUG R ALZ TOTZ                                                   | FIDENCE<br>68.1<br>68.1 %<br>1.0<br>G FIR-T<br>DER-T<br>AL<br>68.1 %<br>1.0<br>G FIR-T<br>DER-T<br>AL                                                                                                              | E LIMITS CO VA 86 40 CO VA 66 300 64                                              | OF TOUT OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S.E.% 7.7 33.8 7.6 S.E.% 16.2 71.4                                                       | E<br>VOLUME<br>L | SAMPI<br>OW 263<br>88<br>259<br>TREES<br>OW 138<br>1                                                | E WITHIN  LE TREES  AVG  285  133  281  S/ACRE  AVG  164  4                                                       | THE SAMP  8 - BF  HIGH  306  178  302  HIGH  191  8  195                 | LE ERROR #     | OF TREES 5  260  OF PLOTS 5                                | 65 SREO. 10 65 SREO. 10 44                                                            | INF. POP.<br>15<br>29<br>INF. POP.<br>15                      |
| CON  CL: SD: DOUG R ALL TOT. CL: SD: DOUG R ALL TOT. CL:                                                | 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T DER-T AL                                                                                                                          | E LIMITS CO VA 88 44 86 CO VA 66 300 64                                           | OF TOUT CO<br>DEFF<br>0.2<br>8.8<br>0.7<br>DEFF<br>0.R.%<br>8.9<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S.E.% 7.7 33.8 7.6 S.E.% 16.2 71.4                                                       | Æ<br>VOLUME<br>L | SAMPI<br>OW 263<br>88<br>259<br>TREES<br>OW 138<br>1                                                | E WITHIN  LE TREES  AVG  285  133  281  SACRE  AVG  164  4  169  L AREA/A                                         | THE SAMP  8 - BF  HIGH  306  178  302  HIGH  191  8  195                 | LE ERROR #     | OF TREES 5  260  OF PLOTS 5                                | 65 SREO. 10 65 SREO. 10 44                                                            | INF. POP.  15  29  INF. POP.  15  20  INF. POP.               |
| CON  CL: SD: DOUG R ALL TOT. SD: DOUG R ALL TOT. CL: SD: DOUG R DOUG DOUG                               | 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T                                                                                                             | E LIMITS CO VA 88 44 86 CO VA 66 300 64 CO VA                                     | OF 1<br>OF 1<br>OUT C<br>DUT C<br>DEFF<br>R.%<br>0.2<br>8.8<br>9.7<br>DEFF<br>4.7<br>DEFF<br>4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S.E.%  S.E.%  S.E.%  S.E.%  16.2  71.4  15.2  S.E.%  8.4                                 | Æ<br>VOLUME<br>L | SAMPI<br>OW 263<br>88<br>259<br>TREES<br>OW 138<br>1<br>143<br>BASAI                                | E WITHIN  LE TREES  AVG  285  133  281  6/ACRE  AVG  164  4  169  L AREA/A  AVG  193                              | THE SAMP  8 - BF  HIGH  306  178  302  HIGH  191  8  195  CRE  HIGH  209 | LE ERROR #     | OF TREES 5  260  OF PLOTS 5  177  OF PLOTS                 | 65 REO. 10 65 REO. 10 44 SREO.                                                        | INF. POP.  15  29  INF. POP.  15  20  INF. POP.               |
| CON  CL: SD: DOUG R ALL SD: DOUG R ALL TOT. CL: SD: DOUG R ALL TOT.                                     | 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL                                                                                              | E LIMITS  CO  VA  86  44  86  CO  VA  66  300  64  CO  VA  31                     | OF TOUT COME OF TO | S.E.%  S.E.%  7.7  33.8  7.6  S.E.%  16.2  71.4  15.2  S.E.%  8.4  74.8                  | Æ<br>VOLUME<br>L | SAMPI<br>OW 263<br>88<br>259<br>TREES<br>OW 138<br>1<br>143<br>BASAI<br>OW 177<br>1                 | E WITHIN  LE TREES  AVG  285  133  281  S/ACRE  AVG  164  4  169  L AREA/A  AVG  193  5                           | THE SAMPI  8 - BF HIGH 306 178 302  HIGH 191 8 195  CRE HIGH 209 9       | LE ERROR #     | OF TREES 5  260  OF PLOTS 5  177  OF PLOTS 5               | 65 REO. 10 44 SREO. 10                                                                | INF. POP.  15  29  INF. POP.  15  20  INF. POP.  15           |
| CON  CL: SD: DOUG R ALL TOT. SD: DOUG R ALL TOT. CL: SD: DOUG R DOUG DOUG                               | SAM TR OUG FIR-T ALDER-T OTAL  DNFIDENCE LIM 68.1 TIME  : 68.1 % : 1.0 DUG FIR-T ALDER-T OTAL  : 68.1 % : 1.0 DUG FIR-T ALDER-T OTAL  : 68.1 % : 1.0 DUG FIR-T ALDER-T OTAL  : 68.1 % : 1.0 DUG FIR-T ALDER-T OTAL | E LIMITS  CO  VA  86  44  86  CO  VA  66  300  64  CO  VA  31                     | OF 1<br>OF 1<br>OUT C<br>DUT C<br>DEFF<br>R.%<br>0.2<br>8.8<br>9.7<br>DEFF<br>4.7<br>DEFF<br>4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S.E.%  S.E.%  S.E.%  S.E.%  16.2  71.4  15.2  S.E.%  8.4                                 | Æ<br>VOLUME<br>L | SAMP<br>OW<br>263<br>88<br>259<br>TREES<br>OW<br>138<br>1<br>143<br>BASAI<br>OW<br>177              | E WITHIN  LE TREES  AVG  285  133  281  6/ACRE  AVG  164  4  169  L AREA/A  AVG  193                              | THE SAMP  8 - BF  HIGH  306  178  302  HIGH  191  8  195  CRE  HIGH  209 | LE ERROR #     | OF TREES 5  260  OF PLOTS 5  177  OF PLOTS                 | 65 REO. 10 65 REO. 10 44 SREO.                                                        | INF. POP.<br>15<br>29<br>INF. POP.<br>15                      |
| CDN  CL: SD: DOUG R ALL TOTA  CL: SD: DOUG R ALL TOTA  CL: SD: TOTA                                     | 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL                                                                                              | E LIMITS  CO  VA  88  44  80  CO  VA  61  30: 64  CO  VA  31: 31:                 | OF TOUT COME OF TO | S.E.%  S.E.%  7.7  33.8  7.6  S.E.%  16.2  71.4  15.2  S.E.%  8.4  74.8                  | Æ<br>VOLUME<br>L | SAMPI<br>OW 263<br>88<br>259<br>TREES<br>OW 138<br>1<br>143<br>BASAI<br>OW 177<br>1<br>183          | E WITHIN  LE TREES  AVG  285  133  281  S/ACRE  AVG  164  4  169  L AREA/A  AVG  193  5                           | THE SAMPI  8 - BF HIGH 306 178 302  HIGH 191 8 195  CRE HIGH 209 9       | LE ERROR # #   | OF TREES 5  260  OF PLOTS 5  177  OF PLOTS 5               | 65 S REO. 10 44 S REO. 10 10                                                          | INF. POP.  15  29  INF. POP.  15  20  INF. POP.  15           |
| CON  CL: SD: DOUG R ALL TOT. CL: SD: DOUG R ALL TOT. CL: SD: CL: SD: CL: SD: CL: SD:                    | AL FIDENC 68.1 68.1% 1.0 G FIR-T DER-T AL 68.1% 1.0                                                                               | E LIMITS  CO  VA  86  44  86  CO  VA  66  300  64  CO  VA  31  31  CO  VA         | DEFF<br>R.%<br>0.2<br>8.8<br>9.7<br>DEFF<br>R.%<br>4.7<br>DEFF<br>J. 7<br>7.6<br>1.4<br>DEFF<br>LR.%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S.E.%  S.E.%  7.7  33.8  7.6  S.E.%  16.2  71.4  15.2  S.E.%  8.4  74.8  7.4  S.E.%      | E<br>VOLUME<br>L | SAMPI<br>OW 263<br>88<br>259<br>TREES<br>OW 138<br>1<br>143<br>BASAI<br>OW 177<br>1<br>183<br>NET B | E WITHIN  LE TREES  AVG  285  133  281  S/ACRE  AVG  164  4  169  L AREA/A  AVG  193  5  198  F/ACRE  AVG         | THE SAMP  306 178 302  HIGH 191 8 195  CRE HIGH 209 9 213  HIGH          | LE ERROR # #   | OF TREES 5  260  OF PLOTS 5  177  OF PLOTS 5               | 65 S REO. 10 44 S REO. 10 10                                                          | INF. POP.  15  29  INF. POP.  15  20  INF. POP.  5  INF. POP. |
| CL: SD: DOUG R ALL TOT.         | 68.1 % 1.0 G FIR-T DER-T AL                                                                        | E LIMITS  CO  VA  88  44  86  CO  VA  61  300  64  CO  VA  31  31  CO  VA         | DEFF<br>R.%<br>0.2<br>8.8<br>9.7<br>DEFF<br>R.%<br>4.7<br>DEFF<br>1.4<br>DEFF<br>1.4<br>DEFF<br>1.8<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S.E.%  S.E.%  7.7  33.8  7.6  S.E.%  16.2  71.4  15.2  S.E.%  8.4  74.8  7.4  S.E.%  9.0 | E<br>VOLUME<br>L | SAMPI<br>OW 263<br>88<br>259<br>TREES<br>OW 138<br>1<br>143<br>BASAI<br>OW 177<br>1<br>183<br>NET B | E WITHIN  LE TREES  AVG  285  133  281  6/ACRE  AVG  164  4  169  L AREA/A  AVG  193  5  198  F/ACRE  AVG  27,712 | THE SAMP!  306 178 302  HIGH 191 8 195  CRE HIGH 209 9 213  HIGH 30,213  | LE ERROR # #   | OF TREES 5  260  OF PLOTS 5  177  OF PLOTS 5  42  OF PLOTS | 65 S REO. 10 44 S REO. 10 10 5 REO. | INF. POP.  15  29  INF. POP.  15  20  INF. POP.  15           |
| CL: SD: DOUG R ALL TOT. CL: SD: DOUG R ALL TOT. CL: SD: CL: SD: DOUG R ALL TOT. CL: SD: DOUG R ALL TOT. | AL FIDENCE 68.1 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL 68.1 % 1.0 G FIR-T DER-T DER-T AL 68.1 % 1.0 G FIR-T DER-T AL                                                  | E LIMITS  CO  VA  86  44  86  CO  VA  66  300  64  CO  VA  31  31  CO  VA  32  34 | DEFF<br>R.%<br>0.2<br>8.8<br>9.7<br>DEFF<br>R.%<br>4.7<br>DEFF<br>J. 7<br>7.6<br>1.4<br>DEFF<br>LR.%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S.E.%  S.E.%  7.7  33.8  7.6  S.E.%  16.2  71.4  15.2  S.E.%  8.4  74.8  7.4  S.E.%      | LU LU 2          | SAMPI<br>OW 263<br>88<br>259<br>TREES<br>OW 138<br>1<br>143<br>BASAI<br>OW 177<br>1<br>183<br>NET B | E WITHIN  LE TREES  AVG  285  133  281  S/ACRE  AVG  164  4  169  L AREA/A  AVG  193  5  198  F/ACRE  AVG         | THE SAMP  306 178 302  HIGH 191 8 195  CRE HIGH 209 9 213  HIGH          | LE ERROR # #   | OF TREES 5  260  OF PLOTS 5  177  OF PLOTS 5  42  OF PLOTS | 65 S REO. 10 44 S REO. 10 10 5 REO. | INF. POP.  15  29  INF. POP.  15  20  INF. POP.  15           |

| TC TSTATS                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                                                                                               |        | ST<br>PROJE                                                                           | TATIST<br>CT                                                       | ICS<br>BIGBELL2                                                                                                               |        |                                              |                                | 1<br>/26/2011                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------|--------------------------------|---------------------------------------------------|
| TWP RGE                                                                                                                                                                                                                                                                                                                                                                         | SECT 7                                                                                                                | RACT                                                                                          |        | TYPE                                                                                  | AC                                                                 | RES                                                                                                                           | PLOTS  | TREES                                        | CuFt                           | BdFt                                              |
| 03N 06W                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                       | 001                                                                                           |        | 0002                                                                                  |                                                                    | 185.00                                                                                                                        | 36     | 349                                          | S                              | W                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |                                                                                               |        |                                                                                       | Y                                                                  | SOME A PERM                                                                                                                   | nr     | ID CIDNING                                   |                                |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |                                                                                               | -      | TREES                                                                                 |                                                                    | ESTIMATED FOTAL                                                                                                               |        | ERCENT<br>AMPLE                              |                                |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                 | PLOTS                                                                                                                 | TREES                                                                                         |        | PER PLO                                                                               |                                                                    | TREES                                                                                                                         |        | REES                                         |                                |                                                   |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                           | 36                                                                                                                    | 349                                                                                           |        | 9.7                                                                                   |                                                                    | TALLE                                                                                                                         |        | · · · · · · · · · · · · · · · · · · ·        |                                |                                                   |
| CRUISE                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                    | 73                                                                                            |        | 4.3                                                                                   |                                                                    | 15,763                                                                                                                        |        | .5                                           |                                |                                                   |
| DBH COUNT                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                    | ,,                                                                                            |        | ٠,,,                                                                                  |                                                                    | 10,700                                                                                                                        |        |                                              |                                |                                                   |
| REFOREST                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |                                                                                               |        |                                                                                       |                                                                    |                                                                                                                               |        |                                              |                                |                                                   |
| COUNT                                                                                                                                                                                                                                                                                                                                                                           | 19                                                                                                                    | 184                                                                                           |        | 9.7                                                                                   |                                                                    |                                                                                                                               |        |                                              |                                |                                                   |
| BLANKS                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                               |        |                                                                                       |                                                                    |                                                                                                                               |        |                                              |                                |                                                   |
| 100 %                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                       |                                                                                               |        |                                                                                       |                                                                    |                                                                                                                               |        |                                              |                                |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |                                                                                               | STA    | ND SUM                                                                                | MARY                                                               |                                                                                                                               |        |                                              |                                |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE                                                                                                                | TREES                                                                                         | AVG    | BOLE                                                                                  | REL                                                                | BASAL                                                                                                                         | GROSS  | NET                                          | GROSS                          | NET                                               |
|                                                                                                                                                                                                                                                                                                                                                                                 | TREES                                                                                                                 | /ACRE                                                                                         | DBH    | LEN                                                                                   | DEN                                                                | AREA                                                                                                                          | BF/AC  | BF/AC                                        | CF/AC                          | CF/AC                                             |
| DOUG FIR-T                                                                                                                                                                                                                                                                                                                                                                      | 70                                                                                                                    | 82.7                                                                                          | 15.0   | 92                                                                                    | 26.3                                                               | 101.9                                                                                                                         | 13,322 | 13,208                                       | 3,328                          | 3,328                                             |
| SNAG-L                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                     | 1.5                                                                                           | 16.0   | 85                                                                                    | 0.5                                                                | 2.0                                                                                                                           | •      | •                                            | •                              | •                                                 |
| WHEMLOCK-L                                                                                                                                                                                                                                                                                                                                                                      | . 1                                                                                                                   | .8                                                                                            | 18.0   | 110                                                                                   | 0.4                                                                | 1.5                                                                                                                           | 169    | 169                                          | 43                             | 43                                                |
| NOB FIR-L                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                     | .2                                                                                            | 30.0   | 130                                                                                   | 0.2                                                                | .9                                                                                                                            | 223    | 211                                          | 45                             | 45                                                |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                           | 73                                                                                                                    | 85.2                                                                                          | 15.1   | 92                                                                                    | 27.3                                                               | 106.3                                                                                                                         | 13,714 | 13,588                                       | 3,415                          | 3,415                                             |
| 68.1                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                     | OF 100 THE                                                                                    |        |                                                                                       |                                                                    |                                                                                                                               |        |                                              |                                |                                                   |
| CL: 68.1 %                                                                                                                                                                                                                                                                                                                                                                      | TIMES OUT                                                                                                             | OF 100 THE                                                                                    | VOLUME | SAMP                                                                                  | LE TREES                                                           | S - BF                                                                                                                        |        | OF TREES<br>5                                | =                              | INF. POP.                                         |
| 68.1                                                                                                                                                                                                                                                                                                                                                                            | TIMES OUT                                                                                                             | OF 100 THE                                                                                    | VOLUME |                                                                                       |                                                                    |                                                                                                                               |        |                                              | REO.<br>10                     |                                                   |
| CL: 68.1 %<br>SD: 1.0                                                                                                                                                                                                                                                                                                                                                           | TIMES OUT<br>COEF<br>VAR.9                                                                                            | F S.E.%                                                                                       | VOLUME | <b>SAMP</b> :<br>OW                                                                   | LE TREES                                                           | S - BF<br>HIGH                                                                                                                |        |                                              | =                              |                                                   |
| CL: 68.1 % SD: 1.0 DOUG FIR-T SNAG-L WHEMLOCK-L                                                                                                                                                                                                                                                                                                                                 | COEF<br>VAR.5                                                                                                         | F S.E.%                                                                                       | VOLUME | <b>SAMP</b> :<br>OW                                                                   | LE TREES                                                           | S - BF<br>HIGH                                                                                                                |        |                                              | =                              |                                                   |
| CL: 68.1 % SD: 1.0 DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L                                                                                                                                                                                                                                                                                                                       | COEF<br>VAR.9<br>51.0                                                                                                 | F S.E.% 6.1                                                                                   | VOLUME | <b>SAMP</b> :<br>OW<br>185                                                            | LE TREES<br>AVG<br>197                                             | <b>S - BF</b> HIGH 209                                                                                                        |        | 5                                            | 10                             | 15                                                |
| CL: 68.1 % SD: 1.0 DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL                                                                                                                                                                                                                                                                                                                 | COEF<br>VAR.9<br>51.0                                                                                                 | F S.E.% 6.1                                                                                   | VOLUME | <b>SAMP</b> :<br>OW                                                                   | LE TREES                                                           | S - BF<br>HIGH                                                                                                                | #      | 5<br>202                                     | 51                             | INF. POP. 15                                      |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 %                                                                                                                                                                                                                                                                                                    | COEF  COEF  VAR.  51.0  71.1  COEF                                                                                    | F S.E.% 6.1                                                                                   | LO     | SAMP: 0W 185 190 TREES                                                                | LE TREES AVG 197 207                                               | 5 - BF<br>HIGH<br>209                                                                                                         | #      | 5<br>202<br>OF PLOTS                         | 51<br>REQ.                     | 22<br>INF. POP.                                   |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOT-L  CL: 68.1 % SD: 1.0                                                                                                                                                                                                                                                                                            | COEF VAR.  71.1  COEF VAR.                                                                                            | F S.E.% 6.1 8.3 F                                                                             | LO     | SAMP:  OW  185  190  TREES  OW                                                        | LE TREES AVG 197  207 S/ACRE AVG                                   | S - BF<br>HIGH<br>209<br>225<br>HIGH                                                                                          | #      | 5<br>202                                     | 51                             | 22<br>INF. POP.                                   |
| CL: 68.1 % SD: 1.0 DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL CL: 68.1 % SD: 1.0 DOUG FIR-T                                                                                                                                                                                                                                                                                   | COEF VAR.9  71.1  COEF VAR.9  67.7                                                                                    | F S.E.% 6.1  8.3  F W S.E.% 11.3                                                              | LO     | SAMP:  DW  185  190  TREES  DW  73                                                    | AVG 197  207  S/ACRE AVG 83                                        | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92                                                                                    | #      | 5<br>202<br>OF PLOTS                         | 51<br>REQ.                     | 22<br>INF. POP.                                   |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L                                                                                                                                                                                                                                                                         | COEF VAR.5 51.0 71.1 COEF VAR.5 67.7 419.8                                                                            | F S.E.% 6.1  8.3  F % S.E.% 11.3 69.9                                                         | LO     | SAMP:  185  190  TREES  OW  73  0                                                     | 207 SACRE AVG 83 1                                                 | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2                                                                               | #      | 5<br>202<br>OF PLOTS                         | 51 REQ.                        | 22<br>INF. POP.                                   |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L                                                                                                                                                                                                                                                              | COEF<br>VAR.5<br>51.0<br>71.1<br>COEF<br>VAR.5<br>67.7<br>419.8<br>432.2                                              | F S.E.% 6.1  8.3  F % S.E.% 11.3 69.9 72.0                                                    | LO     | SAMP:  190  TREES  0  0                                                               | AVG 197  207  S/ACRE AVG 83                                        | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92                                                                                    | #      | 5<br>202<br>OF PLOTS                         | 51 REQ.                        | 22<br>INF. POP.                                   |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L                                                                                                                                                                                                                                                                         | COEF VAR.5 51.0 71.1 COEF VAR.5 67.7 419.8                                                                            | F S.E.% 6.1  8.3  F % S.E.% 11.3 69.9                                                         | LO     | SAMP:  185  190  TREES  OW  73  0                                                     | 207 S/ACRE AVG 83 1 1                                              | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2                                                                               | #      | 5<br>202<br>OF PLOTS                         | 51 REQ.                        | 22<br>INF. POP.<br>15                             |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L                                                                                                                                                                                                                                                    | COEF<br>VAR.5<br>51.0<br>71.1<br>COEF<br>VAR.5<br>67.7<br>419.8<br>432.2<br>600.0                                     | F S.E.% 6.1  8.3  F 4 S.E.% 11.3 69.9 72.0 99.9 10.3                                          | LO     | SAMP:  DW  185  190  TREES  OW  73  0  0  76                                          | 207 S/ACRE AVG 83 1 0 85                                           | 225 HIGH 92 2 1 0 94                                                                                                          | #      | 5<br>202<br>OF PLOTS<br>5                    | 51<br>REO.<br>10               | 22<br>INF. POP.<br>15                             |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL                                                                                                                                                                                                                                              | COEF<br>VAR.9<br>51.0<br>71.1<br>COEF<br>VAR.9<br>67.7<br>419.8<br>432.2<br>600.0<br>61.8                             | F S.E.% 6.1  8.3  F % S.E.% 11.3 69.9 72.0 99.9 10.3                                          | L      | SAMP:  DW  185  190  TREES  OW  73  0  0  76                                          | 207 S/ACRE AVG 83 1 1 0                                            | 225 HIGH 92 2 1 0 94                                                                                                          | #      | 5<br>202<br>OF PLOTS<br>5                    | 51<br>REO.<br>10               | 22<br>INF. POP.<br>15<br>INF. POP.                |
| CL: 68.1 % SD: 1.0 DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0 DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 %                                                                                                                                                                                                                                    | COEF VAR.5 51.0  71.1  COEF VAR.5 67.7 419.8 432.2 600.0 61.8  COEF                                                   | F S.E.% 6.1  8.3  F 8.5  6.1  11.3 69.9 72.0 99.9 10.3                                        | L      | SAMP:  DW 185  190  TREES  OW 73  0  0  76  BASAI                                     | 207 SACRE AVG 83 1 0 85 L AREA/A                                   | 225 HIGH 92 2 1 0 94  CRE HIGH 112                                                                                            | #      | 5<br>202<br>OF PLOTS<br>5<br>153<br>OF PLOTS | 51<br>REQ.<br>10               | 22<br>INF. POP.<br>13<br>INF. POP.                |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L SD: 1.0                                                                                                                                                                                               | COEF VAR. 51.0  71.1  COEF VAR. 67.7  419.8  432.2  600.0  61.8  COEF VAR. 600.8  419.8                               | F S.E.%  6.1  8.3  F % S.E.%  11.3 69.9 72.0 99.9 10.3  F % S.E.%  10.1 69.9                  | L      | SAMP:  DW 185  190  TREES  OW 73  0  0  76  BASAI  DW 92  1                           | 207 S/ACRE AVG 83 1 0 85 AREA/A AVG 102 2                          | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2<br>1<br>0<br>94<br>CRE<br>HIGH<br>112<br>3                                    | #      | 5<br>202<br>OF PLOTS<br>5<br>153<br>OF PLOTS | 51<br>REQ.<br>10               | 22<br>INF. POP.<br>15<br>INF. POP.                |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L                                                                                                                          | COEF VAR.5 51.0  71.1  COEF VAR.5 67.7 419.8 432.2 600.0 61.8  COEF VAR.6 60.8 419.8 432.2                            | F S.E.%  6.1  8.3  F % S.E.%  11.3 69.9 72.0 99.9 10.3  F % S.E.%  10.1 69.9 72.0             | L      | SAMP:  OW 185  190  TREES  OW 73  0  0  76  BASAI  OW 92  1  0                        | 207  S/ACRE  AVG  83  1  0  85  AREA/A  AVG  102  2  1             | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2<br>1<br>0<br>94<br>CRE<br>HIGH<br>112<br>3<br>3                               | #      | 5<br>202<br>OF PLOTS<br>5<br>153<br>OF PLOTS | 51<br>REQ.<br>10               | 22<br>INF. POP.<br>13<br>INF. POP.                |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L NOB FIR-L                                                                                                      | COEF VAR.5 51.0  71.1 COEF VAR.5 67.7 419.8 432.2 600.0 61.8 COEF VAR.6 60.8 419.8 432.2 600.0                        | F S.E.% 6.1  8.3  F % S.E.% 11.3 69.9 72.0 99.9 10.3  F % S.E.% 10.1 69.9 72.0 99.9           | L      | SAMP:  OW 185  190  TREES  OW 73  0  0  76  BASAI  OW 92  1  0  0                     | 207 SACRE AVG 83 1 0 85 AREA/A AVG 102 2 1 1                       | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2<br>1<br>0<br>94<br>CRE<br>HIGH<br>112<br>3<br>3                               | #      | 202 OF PLOTS 5  153 OF PLOTS 5               | 51<br>REQ. 10<br>38<br>REQ. 10 | 22 INF. POP. 15 INF. POP. 15                      |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL                                                                                                          | COEF VAR.5 51.0  71.1  COEF VAR.9 67.7 419.8 432.2 600.0 61.8 COEF VAR.9 60.8 419.8 432.2 600.0 52.4                  | F S.E.%  6.1  8.3  F  8.5  11.3  69.9  72.0  99.9  10.3  F  8.5  10.1  69.9  72.0  99.9  8.7  | L      | SAMP:  OW 185  190  TREES  OW 73  0  0  76  BASAI  OW 92  1  0                        | 207  S/ACRE  AVG  83  1  0  85  AREA/A  AVG  102  2  1             | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2<br>1<br>0<br>94<br>CRE<br>HIGH<br>112<br>3<br>3                               | #      | 5<br>202<br>OF PLOTS<br>5<br>153<br>OF PLOTS | 51<br>REQ.<br>10               | 22 INF. POP. 15 INF. POP. 15                      |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL                                                                              | COEF VAR.5 51.0  71.1  COEF VAR.6 67.7 419.8 432.2 600.0 61.8  COEF VAR.6 60.8 419.8 432.2 600.0 52.4 COEF            | F S.E.%  11.3 69.9 72.0 99.9 10.3  F  8.E.%  10.1 69.9 72.0 99.9 8.7                          | L      | SAMP:  DW 185  190  TREES  OW 73  0  0  76  BASAI  OW 92  1  0  0  97                 | 207 S/ACRE AVG 83 1 0 85 AREA/A AVG 102 2 1 106 F/ACRE             | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2<br>1<br>0<br>94<br>CRE<br>HIGH<br>112<br>3<br>3                               | #      | 5  202  OF PLOTS  5  153  OF PLOTS  5        | 38<br>REQ. 10                  | 222 INF. POP. 15  17  INF. POP. 15  12  INF. POP. |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0                                                                                      | COEF VAR.5 51.0  71.1  COEF VAR.5 67.7 419.8 432.2 600.0 61.8  COEF VAR.6 60.8 419.8 432.2 600.0 52.4 COEF            | F S.E.%  S.E.%  6.1  8.3  F  8.8  11.3 69.9 72.0 99.9 10.3  F  8.E.%  10.1 69.9 72.0 99.9 8.7 | LO     | SAMP:  OW 185  190  TREES  OW 73  O 0  76  BASAI  OW 92  1  0  0  97  NET B           | 207 S/ACRE AVG 83 1 0 85 AREA/A AVG 102 2 1 106 F/ACRE AVG         | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2<br>1<br>0<br>94<br>CRE<br>HIGH<br>112<br>3<br>3<br>2<br>116                   | #      | 5  202  OF PLOTS  5  153  OF PLOTS  5        | 38<br>REQ. 10                  | 222 INF. POP. 15  17  INF. POP. 15  12  INF. POP. |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL                                        | COEF VAR.5 51.0  71.1  COEF VAR.6 67.7 419.8 432.2 600.0 61.8  COEF VAR.6 60.8 419.8 432.2 600.0 52.4 COEF            | F S.E.%  S.E.%  6.1  8.3  F  8.8  11.3 69.9 72.0 99.9 10.3  F  8.E.%  10.1 69.9 72.0 99.9 8.7 | LO     | SAMP:  OW 185  190  TREES  OW 73  0  0  76  BASAI  OW 92  1  0  0  97  NET B          | 207 S/ACRE AVG 83 1 0 85 AREA/A AVG 102 2 1 106 F/ACRE             | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2<br>1<br>0<br>94<br>CRE<br>HIGH<br>112<br>3<br>3<br>2<br>116                   | #      | 5  202  OF PLOTS  5  153  OF PLOTS  5        | 38 REQ. 10  27 REQ.            | 222 INF. POP. 15  17  INF. POP. 15  12  INF. POP. |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L | COEF VAR.5 51.0  71.1  COEF VAR.5 67.7 419.8 432.2 600.0 61.8  COEF VAR.6 60.8 419.8 432.2 600.0 52.4 COEF VAR.6 62.5 | F S.E.%  11.3 69.9 72.0 99.9 10.3  F % S.E.%  10.1 69.9 72.0 99.9 8.7  F % S.E.% 10.1         | LO     | SAMP:  OW 185  190  TREES  OW 73  0  0  76  BASAI  OW 92  1  0  0  77  NET BOW  1,833 | 207 SACRE AVG 83 1 0 85 AREA/A AVG 102 2 1 1 106 F/ACRE AVG 13,208 | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2<br>1<br>0<br>94<br>CRE<br>HIGH<br>112<br>3<br>3<br>2<br>116<br>HIGH<br>14,583 | #      | 5  202  OF PLOTS  5  153  OF PLOTS  5        | 38 REQ. 10  27 REQ.            | 222 INF. POP. 15  17  INF. POP. 15  12  INF. POP. |
| CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL  CL: 68.1 % SD: 1.0  DOUG FIR-T SNAG-L WHEMLOCK-L NOB FIR-L TOTAL                                        | COEF VAR.5 51.0  71.1  COEF VAR.5 67.7 419.8 432.2 600.0 61.8  COEF VAR.6 60.8 419.8 432.2 600.0 52.4 COEF VAR.6 62.5 | F S.E.%  S.E.%  6.1  8.3  F  8.8  11.3 69.9 72.0 99.9 10.3  F  8.E.%  10.1 69.9 72.0 99.9 8.7 | LO     | SAMP:  OW 185  190  TREES  OW 73  O 0  76  BASAI  OW 92  1  0  0  97  NET B           | 207 S/ACRE AVG 83 1 0 85 AREA/A AVG 102 2 1 106 F/ACRE AVG         | S - BF<br>HIGH<br>209<br>225<br>HIGH<br>92<br>2<br>1<br>0<br>94<br>CRE<br>HIGH<br>112<br>3<br>3<br>2<br>116                   | #      | 5  202  OF PLOTS  5  153  OF PLOTS  5        | 38 REQ. 10  27 REQ.            | 22<br>INF. POP.<br>15<br>INF. POP.<br>15          |

| TC TL              | OGSTVB               |      |                        |     | Lo    | g Sto        | k T | able - I | MBF    |             |         |         |         |         |                               |                              |       |     |
|--------------------|----------------------|------|------------------------|-----|-------|--------------|-----|----------|--------|-------------|---------|---------|---------|---------|-------------------------------|------------------------------|-------|-----|
|                    |                      |      |                        |     | Pr    | oject:       |     | BIG      | BELL   | 2           |         |         |         |         |                               |                              |       |     |
| T03N<br>Twp<br>03N | R06W :<br>Rge<br>06W | S    | 0001<br>ec Tra<br>02 1 | ıct |       | Type<br>0001 |     | Acres    |        | Plots<br>19 | Samj    | ple Tre | es      | I       | SN R0<br>Page<br>Date<br>Fime | 6W S02<br>1<br>9/26/<br>1:37 |       |     |
| S                  | So Gr                | Log  | Gross                  | %   | Net   | %            |     |          | Net Vo | lume b      | y Scali | ng Dia  | meter i | n Inche | s                             |                              |       |     |
| Spp T              | rt de                | Len  | MBF                    | Def | MBF   | Spc          | 2-3 | 4-5      | 6-7    | 8-9         | 10-11   | 12-13   | 14-15   | 16-19   | 20-23                         | 24-29                        | 30-39 | 40+ |
| DF                 | 2M                   | 1 40 | 1,255                  |     | 1,255 | 40.4         |     |          |        |             |         | 412     | 380     | 372     | 91                            |                              |       |     |
| DF —               | 3M                   | 1 24 | 6                      |     | 6     | .2           |     |          |        | 6           |         |         |         |         |                               |                              |       |     |
| DF                 | 3M                   | 1 30 | 6                      |     | 6     | .2           |     |          |        | 6           |         |         |         |         |                               |                              | 1     |     |
| DF                 | 3M                   | 1 32 | 206                    |     | 206   | 6.6          |     |          | 125    | 17          | 19      | 46      |         |         |                               |                              |       |     |
| DF                 | 3M                   | 1 40 | 1,349                  |     | 1,349 | 43.5         |     |          | 482    | 274         | 570     | 22      |         |         |                               |                              |       |     |
| DF _               | 4N                   | 1 16 | 54                     |     | 54    | 1.7          |     |          | 54     |             |         |         |         |         |                               |                              |       |     |
| DF                 | 4M                   | 1 20 | 61                     |     | 61    | 2.0          |     |          | 61     |             |         |         |         |         |                               |                              |       |     |
| DF                 | 4N                   | [ 24 | 45                     |     | 45    | 1.5          |     |          | 45     |             |         |         |         |         |                               |                              |       |     |
| DF                 | 4N                   | 1 30 | 41                     |     | 41    | 1.3          |     |          | 34     | 7           |         |         |         |         |                               | •                            |       |     |
| DF                 | 4N                   | 1 32 | 79                     |     | 79    | 2,5          |     |          | 79     |             |         |         |         |         |                               |                              |       |     |
| DF                 | Tot                  | als  | 3,104                  |     | 3,104 | 98.1         |     |          | 881    | 310         | 589     | 480     | 380     | 372     | 91                            |                              |       |     |
| RA                 | R                    | 20   | 5                      |     | 5     | 7.9          |     |          | 5      |             |         |         |         |         |                               |                              |       |     |
| RA                 | R                    | 24   | 16                     |     | 16    | 26.4         |     |          |        |             | 16      |         |         |         |                               |                              |       |     |
| RA                 | R                    | 30   | 40                     |     | 40    | 65.7         |     |          | 6      | 15          |         | 19      |         |         |                               |                              |       |     |
| RA                 | Tot                  | als  | 61                     |     | 61    | 1.9          |     |          | 11     | 15          | 16      | 19      |         |         |                               |                              |       |     |
| Total Al           | l Species            |      | 3,165                  |     | 3,165 | 100.0        |     |          | 892    | 325         | 605     | 499     | 380     | 372     | 91                            |                              |       |     |

| TC TL                    | OGSTVB             |                                      |                             |     |                             | g Stoo<br>oject:               | ek T | able -<br>BIG | MBF<br>BELL                 | 2           |         |                |           |         | <del></del>                    |             |                          |
|--------------------------|--------------------|--------------------------------------|-----------------------------|-----|-----------------------------|--------------------------------|------|---------------|-----------------------------|-------------|---------|----------------|-----------|---------|--------------------------------|-------------|--------------------------|
| T03N<br>Twp<br>03N       | R06W<br>Rge<br>06W | S                                    | F0002<br>ec Tra<br>02 0001  |     |                             | Type<br>0002                   |      | Acres<br>185. |                             | Plots<br>36 | Samţ    | ole Tre<br>169 | es        | ]       | SN R0e<br>Page<br>Date<br>Cime | 1<br>9/26/2 | 2 T0002<br>2011<br>:14PM |
|                          | So Gr              | Log                                  | Gross                       | %   | Net                         | %                              |      |               | Net Vo                      | lume b      | y Scali | ng Dia         | meter ii  | 1 Inche | s                              |             |                          |
| Ѕрр Т                    | rt de              | Len                                  | MBF                         | Def | MBF                         | Spc                            | 2-3  | 4-5           | 6-7                         | 8-9         | 10-11   | 12-13          | 14-15     | 16-19   | 20-23                          | 24-29       | 30-39 40+                |
| DF T                     | CU                 | J 6                                  |                             |     |                             |                                |      |               |                             |             |         |                |           |         |                                |             |                          |
| DF T<br>DF T<br>DF T     | 21                 | 1 24<br>1 32<br>1 40                 | 22<br>23<br>570             | .5  | 22<br>23<br>567             | .9<br>.9<br>23.2               |      |               |                             |             |         | 23<br>429      | 22<br>105 |         |                                |             |                          |
| DF T<br>DF T             |                    | 1 32<br>1 40                         | 281<br>1,287                | 1.3 | 281<br>1,270                | 11.5<br>52.0                   |      |               | 128<br>183                  | 153<br>500  | 564     | 24             |           |         |                                |             |                          |
| DF T DF T DF T DF T DF T | 4N<br>4N<br>4N     | 1 16<br>1 20<br>1 24<br>1 30<br>1 40 | 48<br>65<br>113<br>35<br>20 | 1.1 | 48<br>65<br>112<br>35<br>20 | 2.0<br>2.7<br>4.6<br>1.4<br>.8 |      |               | 48<br>65<br>112<br>35<br>20 |             |         |                |           |         |                                |             |                          |
| DF                       | To                 | tals                                 | 2,465                       |     | 2,443                       | 97.2                           |      |               | 591                         | 652         | 564     | 476            | 127       | 33      |                                |             |                          |
| WH L<br>WH L             |                    | J 12<br>J 24                         |                             |     |                             |                                |      |               |                             |             |         |                |           |         |                                |             |                          |
| WH L                     | 2N                 | 1 40                                 | 31                          |     | 31                          | 100.0                          |      |               |                             |             |         | 31             |           |         |                                | ·           |                          |
| WH                       | То                 | tals                                 | 31                          |     | 31                          | 1.2                            |      |               |                             |             |         | 31             |           |         |                                |             |                          |
| NF L                     | 2N                 | 1 40                                 | 39                          | 5.4 | 37                          | 95.5                           |      |               |                             |             |         |                | 11        |         | 27                             |             |                          |
| NF L                     | 3N                 | 1 32                                 | 2                           |     | 2                           | 4.5                            |      |               | 2                           |             |         |                |           |         |                                |             |                          |
| NF                       | То                 | tals                                 | 41                          | 5.1 | 39                          | 1.6                            |      |               | 2                           |             |         |                | 11        |         | 27                             |             |                          |
| Total All                | Species            |                                      | 2,537                       |     | 2,514                       | 100.0                          |      |               | 593                         | 652         | 564     | 508            | 137       | 33      | 27                             |             |                          |

| TC                 | TSTNDSU              | ЛМ   |        |          |           |                  |        | Stand          | l Table      | Summa          | ry            |               |                |                                   |                                     |            |
|--------------------|----------------------|------|--------|----------|-----------|------------------|--------|----------------|--------------|----------------|---------------|---------------|----------------|-----------------------------------|-------------------------------------|------------|
|                    |                      |      |        |          |           |                  |        | Proj           | ect          | BIGBEI         | LL2           |               |                |                                   |                                     |            |
| T031<br>Twp<br>03N | N R06V<br>Rge<br>06W | Sec  |        | Fract    | :         |                  |        | Гуре<br>)001   |              | cres<br>2.00   | Plots 5       | Sample T      |                | T03N R<br>Page:<br>Date:<br>Time: | 06W S02<br>1<br>09/26/20<br>1:37:31 | 0:         |
|                    | S                    | Samj |        |          | Av<br>Ht  | Trees/           |        | Logs           | Net          | nge Log<br>Net | Tons/         | Net<br>Cu.Ft. | Net<br>Bd.Ft.  |                                   | otals                               |            |
| Spc                | T DBI                |      |        | 16'      | Tot       | Acre             | Acre   | Acre           | l            | Bd.Ft.         | Acre          | Acre          | Acre           | Tons                              | Cunits                              | MBF        |
| DF                 | 8                    |      | 2      | 88       | 55        | 10.135           | 3.54   | 10.14          | 4.6          | 20.0           | 1.34          |               | 203            | 150                               | 53                                  | 23         |
| DF                 | 9                    |      | 4      | 87       | 71        | 16.016           | 7.08   | 16.02          | 7.6          | 40.0           | 3.49          |               | 641            | 390                               | 137                                 | 72         |
| DF                 | 1(                   |      | 8      | 88       | 89        | 25.946           |        | 25.95          | 12.8         | 60.0           | 9,44          |               | 1,557          | 1,057                             | 371                                 | 174        |
| DF                 | 11                   |      | 3      | 88       | 76        | 8.041            | 5.31   | 10.72          | 11.6         | 50.0           | 3.54          |               | 536            | 397                               | 139                                 | 60         |
| DF                 | 12<br>13             |      | 8<br>7 | 88       | 75        | 18.018           |        | 24.78          | 13.9         | 51.8           | 9.78          |               | 1,284          | 1,096                             | 384                                 | 144        |
| DF                 | 13                   |      | 7      | 87       | 98        | 13.434           |        | 26.87          | 14.1         | 56.4           | 10.81         | 379           | 1,516          | 1,210                             | 425                                 | 170        |
| DF<br>DF           | 15                   |      | 8      | 87<br>88 | 98<br>100 | 11.583<br>11.532 |        | 21.51          | 18.2         | 78.5           | 11.15         | 391           | 1,688          | 1,249                             | 438                                 | 189        |
| DF                 | 16                   |      | 6      | 88       | 97        | 7.601            |        | 23.06          | 21.6<br>23.3 | 96.2           | 14.20         | 498           | 2,220          | 1,591                             | 558                                 | 249        |
| DF                 | 17                   |      | 7      | 88       | 103       |                  | 12.38  | 15.20<br>15.71 | 23.3<br>27.7 | 95.0           | 10.09         | 354           | 1,444          | 1,130                             | 397                                 | 162        |
| DF                 | 18                   |      | 5      | 87       | 110       | 5.005            | 8.84   | 11.01          | 30.6         | 117.1<br>120.0 | 12.38<br>9.59 |               | 1,840          | 1,387                             | 487                                 | 206        |
| DF                 | 19                   |      | 5      | 87       | 107       | 4.492            | 8.84   | 9.88           | 34.5         | 138.2          | 9.39          |               | 1,321<br>1,366 | 1,074                             | 377                                 | 148        |
| DF                 | 20                   |      | 7      | 88       | 106       |                  | 12.38  | 12.16          | 34.3         | 138.2          | 13.04         |               | 1,727          | 1,089<br>1,461                    | 382<br>513                          | 153        |
| DF                 | 21                   |      | 8      | 87       | 107       | 5.884            |        | 11.77          | 45.9         | 180.0          | 15.38         | 540           | 2,118          | 1,723                             | 605                                 | 193<br>237 |
| DF                 | 22                   |      | 7      | 87       | 122       | 4.691            |        | 14.07          | 37,7         | 175.2          | 15.14         | 531           | 2,116          | 1,695                             | 595                                 | 276        |
| DF                 | 23                   |      | 2      | 87       | 118       | 1.226            | 3.54   | 3.68           | 40.9         | 185.0          | 4.29          |               | 681            | 480                               | 169                                 | 76         |
| DF                 | 24                   |      | 5      | 88       | 121       | 2.815            | 8.84   | 8.45           | 43.5         | 190.0          | 10.46         |               | 1,605          | 1,172                             | 411                                 | 180        |
| DF                 | 25                   |      | 4      | 87       | 115       | 2.076            | 7.08   | 6.23           | 47.6         | 216.7          | 8.44          | 296           | 1,349          | 945                               | 332                                 | 151        |
| DF                 | 26                   |      | 1      | 87       | 114       | .480             | 1.77   | 1.44           | 51,6         | 240.0          | 2.12          |               | 345            | 237                               | 83                                  | 39         |
| DF                 | 28                   |      | 2      | 87       | 121       | .827             | 3.54   | 2.48           | 61.3         | 273.3          | 4.33          |               | 678            | 485                               | 170                                 | 76         |
| DF                 | 29                   | )    | 2      | 88       | 126       | .771             | 3.54   | 2.31           | 68.5         | 326.7          | 4.52          |               | 756            | 506                               | 178                                 | 85         |
| DF                 | 30                   | ı    | 1      | 88       | 122       | .360             | 1.77   | 1.08           | 73.3         | 343.3          | 2.26          |               | 371            | 253                               | 89                                  | 42         |
| DF                 | Total                | s 10 | 19     | 88       | 91        | 164.467          | 192.82 | 274.52         | 23.7         | 100.9          | 185.51        | 6,509         | 27,712         | 20,778                            | 7,290                               | 3,104      |
| RA                 | 13                   |      | 1      | 87       | 69        | 1.919            | 1.77   | 1.92           | 20.5         | 70.0           | 1.08          | 39            | 134            | 121                               | 44                                  | 15         |
| RA                 | 15                   |      | 1      | 88       | 64        | 1.441            | 1.77   | 2.88           | 16.0         | 65.0           | 1.27          | 46            | 187            | 142                               | 52                                  | 21         |
| RA                 | 17                   |      | 1      | 87       | 84        | 1.122            | 1.77   | 2,24           | 25.6         | 100.0          | 1.58          | 57            | 224            | 177                               | 64                                  | 25         |
| RA                 | Total                | š    | 3      | 87       | 71        | 4.483            | 5.31   | 7.05           | 20.3         | 77.5           | 3,93          | 143           | 546            | 440                               | 160                                 | 61         |
| Totals             |                      | 11   | 2      | 88       | 90        | 168.950          | 198.12 | 281.56         | 23.6         | 100.4          | 189.44        | 6652          | 28,258         | 21,217                            | 7,450                               | 3,165      |

| TC                | TST    | NDSUN              | Л               |                       |                 |        |             | Stand        | l Table | Summa                   | ıry     |                       |                       |                                   |                                    |            |
|-------------------|--------|--------------------|-----------------|-----------------------|-----------------|--------|-------------|--------------|---------|-------------------------|---------|-----------------------|-----------------------|-----------------------------------|------------------------------------|------------|
|                   |        |                    |                 |                       |                 |        |             | Proje        | ect     | BIGBE                   | LL2     |                       |                       |                                   |                                    |            |
| T03<br>Twp<br>03N |        | R06W<br>Rge<br>06W | Sec<br>02       | 0002<br>Tract<br>0001 |                 |        |             | Type<br>1002 |         | cres<br>5.00            | Plots 3 | Sample T              |                       | T03N R<br>Page:<br>Date:<br>Time: | 06W S02<br>1<br>09/26/2<br>1:39:13 | <b>0</b> 1 |
| Spc               | S<br>T |                    | Sample<br>Trees | FF<br>16'             | Av<br>Ht<br>Tot | Trees/ | BA/<br>Acre | Logs<br>Acre | Net     | ge Log<br>Net<br>Bd.Ft. | Tons/   | Net<br>Cu.Ft.<br>Acre | Net<br>Bd.Ft.<br>Acre | T ons                             | otals<br>Cunits                    | MBF        |
| DF                | T      | 10                 | 2               | 82                    | 57              | 5.987  | 3.27        | 5.99         | 8,4     | 31.2                    | 1.44    |                       | 187                   | 266                               | 93                                 | 35         |
| DF                | T      | 11                 | 2               | 85                    | 85              | 4.948  | 3.27        | 4.95         | 16.3    | 60.0                    | 2,29    |                       | 297                   | 425                               | 149                                | 55<br>55   |
| DF                | Ť      | 12                 | 4               | 85                    | 85              | 8.316  | 6.53        | 16.63        | 10.5    | 44.1                    | 4.99    |                       | 733                   | 923                               | 324                                | 136        |
| DF                | Т      | 13                 | 4               | 87                    | 85              | 7.085  | 6.53        | 11.53        | 15.8    | 58.4                    | 5.18    |                       | 674                   | 959                               | 336                                | 125        |
| DF                | Т      | 14                 | 14              | 87                    | 93              | 19.056 | 20.37       | 38.11        | 16.9    | 66.7                    | 18.36   | 644                   | 2,543                 | 3,397                             | 1,192                              | 470        |
| DF                | T      | 15                 | 4               | 88                    | 100             | 4.646  | 5.70        | 9.29         | 20.5    | 82.9                    | 5.42    | 190                   | 770                   | 1,003                             | 352                                | 143        |
| DF                | T      | 16                 | 9               | 86                    | 97              | 9.634  | 13.45       | 19.27        | 24.0    | 94.1                    | 13.16   | 462                   | 1,813                 | 2,434                             | 854                                | 335        |
| DF                | T      | 17                 | 5               | 89                    | 111             | 5.442  | 8.58        | 11.66        | 27.8    | 114.0                   | 9.25    | 325                   | 1,329                 | 1,712                             | 601                                | 246        |
| DF                | T      |                    | 16              | 88                    | 98              | 11.969 | 21.15       | 25.32        | 29.1    | 115.7                   | 20.99   | 737                   | 2,928                 | 3,883                             | 1,363                              | 542        |
| DF                | T      | 19                 | 3               | 88                    | 109             | 2.277  | 4.48        | 5.17         | 33.4    | 133,3                   | 4.93    |                       | 689                   | 911                               | 320                                | 128        |
| DF                | T      | 20                 | 3               | 93                    | 96              | 1.675  | 3.65        | 3.35         | 38.8    | 166.7                   | 3.71    |                       | 558                   | 686                               | 241                                | 103        |
| DF                | T      | 21                 | 1               | 83                    | 98              | .506   | 1.22        | 1.01         | 42.8    | 150.0                   | 1.24    |                       | 152                   | 228                               | 80                                 | 28         |
| DF                | T      | 24                 | 3               | 86                    | 100             | 1.163  | 3.65        | 2.71         | 50.1    | 197.1                   | 3.88    | 136                   | 535                   | 717                               | 252                                | 99         |
| DF                |        | Totals             | 70              | 87                    | 92              | 82.706 | 101.86      | 154.99       | 21.5    | 85.2                    | 94.84   | 3,328                 | 13,208                | 17,545                            | 6,156                              | 2,443      |
| NF                | L      | 30                 | 1               | 89                    | 130             | .190   | .93         | .57          | 78.4    | 370.0                   | 1.07    | 45                    | 211                   | 199                               | 83                                 | 39         |
| NF                |        | Totals             | 1               | 89                    | 130             | .190   | .93         | .57          | 78.4    | 370.0                   | 1.07    | 45                    | 211                   | 199                               | 83                                 | 39         |
| WH                | L      | 18                 | 1               | 88                    | 110             | .843   | 1.49        | .84          | 51.1    | 200.0                   | 1.38    | 43                    | 169                   | 255                               | 80                                 | 31         |
| WH                |        | Totals             | 1               | 88                    | 110             | .843   | 1.49        | .84          | 51.1    | 200.0                   | 1.38    | 43                    | 169                   | 255                               | 80                                 | 31         |
| SN                | L      | 16                 | 1               |                       | 17              | 1.464  | 2.04        |              |         |                         |         |                       |                       |                                   |                                    |            |
| SN                |        | Totals             | 1               |                       | 17              | 1.464  | 2.04        |              |         |                         |         |                       |                       |                                   |                                    |            |
| Totals            | ŝ      | 1                  | 73              | 87                    | 91              | 85.203 | 106.33      | 156.41       | 21.8    | 86.9                    | 97.29   | 3415                  | 13,588                | 17,998                            | 6,319                              | 2,514      |

| тт                 | SPCSTO       | GR                    |                     |             | Species,            | Sort G<br>Projec | rade - Boai<br>t: BIG | d Foot<br>BELL2  | Volu     | mes (        | Гуре)          |                |        |       |               | Page<br>Date<br>Time | 9        | 1<br>/26/20<br>l:37:2 |                      |
|--------------------|--------------|-----------------------|---------------------|-------------|---------------------|------------------|-----------------------|------------------|----------|--------------|----------------|----------------|--------|-------|---------------|----------------------|----------|-----------------------|----------------------|
| T03N<br>Twp<br>03N | R            | 7 S02 T0<br>kge<br>6W | 0001<br>Sec<br>02 1 | Tract       |                     | Type<br>0001     |                       |                  | its<br>9 | -            | le Tree<br>112 | S              | C<br>S | uFt   | T0<br>Bd<br>W |                      | R06W     | S02 T                 | 0001                 |
|                    |              |                       | %                   |             |                     |                  |                       | Percent          | Net B    | oard F       | oot Vol        | ıme            |        |       | A             | verag                | ge Log   |                       | т                    |
| Spp                | S So<br>T rt |                       | Net<br>BdFt         | Bd.<br>Def% | Ft. per Ac<br>Gross | re<br>Net        | Total<br>Net MBF      | Log S<br>4-5 6-1 |          | ia.<br>6 17+ | Log            | g Lei<br>21-30 |        | 36-99 | Ln<br>Ft      | Dia<br>In            | Bd<br>Ft | CF/<br>Lf             | Logs<br>Per<br>/Acre |
| DF                 |              | 2M                    | 40                  |             | 11,209              | 11,209           | 1,255                 |                  | 78       | 22           |                |                |        | 100   | 40            | 14                   | 318      | 1.73                  | 35.                  |
| DF                 |              | 3M                    | 50                  |             | 13,997              | 13,997           | 1,568                 | 96               | 4        |              |                | 1              | 13     | 86    | 38            | 8                    | 90       | 0.58                  | 155.0                |
| DF                 |              | 4M                    | 10                  |             | 2,506               | 2,506            | 281                   | 100              |          |              | 41             | 31             | 28     |       | 23            | 6                    | 30       | 0.32                  | 84.2                 |
| DF                 | Totals       | 5                     | 98                  |             | 27,712              | 27,712           | 3,104                 | 57               | 34       | 9            | 4              | 3              | 9      | 84    | 34            | 8                    | 101      | 0.70                  | 274.5                |
| RA                 |              | R                     | 100                 |             | 546                 | 546              | 61                    | 69               | 31       |              | 8              | 92             |        |       | 27            | 9                    | 78       | 0.76                  | 7.0                  |
| RA                 | Total        | s                     | 2                   |             | 546                 | 546              | 61                    | 69               | 31       |              | 8              | 92             |        |       | 27            | 9                    | 78       | 0.76                  | 7.0                  |
| Туре Т             | otals        |                       |                     |             | 28,258              | 28,258           | 3,165                 | 58               | 34       | 9            | 4              | 5              | 9      | 82    | 34            | 8                    | 100      | 0.70                  | 281.6                |

| T '               | TSP   | CSTG     | ≩R       |             |              | Species,            | Sort G<br>Projec | rade - Boai<br>t: BIG | d Foo<br>BELL2 |             | olun                   | nes (T               | (ype)                                            |                | •   |       |                | Page<br>Date<br>Time | , 9      | 1<br>0/26/2(<br>1:39:1 |                      |
|-------------------|-------|----------|----------|-------------|--------------|---------------------|------------------|-----------------------|----------------|-------------|------------------------|----------------------|--------------------------------------------------|----------------|-----|-------|----------------|----------------------|----------|------------------------|----------------------|
| T03N<br>Tw<br>03N | p     | R        | 0        | Sec         | Tract<br>001 |                     | Type<br>0002     |                       |                | Plots<br>36 |                        | -                    | le Tree<br>69                                    | s              | S   | 'uFt  | T0:<br>Bd<br>W |                      | k06W     | S02 T                  | 0002                 |
|                   |       |          |          | %           |              | 180                 |                  |                       | Perce          | nt N        | et Bo                  | ard Fo               | ot Vol                                           | ume            |     |       | A              | verag                | ge Log   | 5                      | Logg                 |
| Spp               |       | So<br>rt | Gr<br>ad | Net<br>BdFt | Bd.<br>Def%  | Ft. per Ac<br>Gross | ere<br>Net       | Total<br>Net MBF      |                |             | le Di<br>12-1 <i>e</i> | a.<br>5 1 <b>7</b> + | Log                                              | g Lei<br>21-30 |     | 36-99 | Ln<br>Ft       | Dia<br>In            | Bd<br>Ft | CF/<br>Lf              | Logs<br>Per<br>/Acre |
| DF                | Т     |          | CU       |             |              |                     | ***              |                       |                |             |                        |                      |                                                  |                |     |       | 6              | 13                   |          | 0.00                   | .7                   |
| DF                | T     |          | 2M       | 25          | .4           | 3,323               | 3,308            | 612                   |                |             | 95                     | 5                    |                                                  | 4              | 4   | 93    | 39             | 13                   | 223      | 1.32                   | 14.8                 |
| DF                | T     |          | 3M       | 63          | 1.1          | 8,478               | 8,384            | 1,551                 |                | 98          | 2                      |                      |                                                  |                | 18  | 82    | 38             | 8                    | 100      | 0.68                   | 84.2                 |
| DF                | T     |          | 4M       | 12          | .5           | 1,522               | 1,515            | 280                   | 1              | 00          |                        |                      | 40                                               | 52             |     | 7     | 22             | 6                    | 27       | 0.33                   | 56.0                 |
| DF                | T     | Tota     | İs       | 97          | .9           | 13,322              | 13,208           | 2,443                 | ,,             | 74          | 25                     | 1                    | 5                                                | 7              | 12  | 76    | 32             | 8                    | 85       | 0.67                   | 155.7                |
| WH                | L     |          | CU       |             |              |                     |                  |                       |                |             |                        |                      |                                                  |                |     |       | 16             | 7                    |          | 0.00                   | 2.5                  |
| WH                | L     |          | 2M       | 100         |              | 169                 | 169              | 31                    |                |             | 100                    |                      |                                                  |                |     | 100   |                | 12                   | 200      |                        | .8                   |
| WH                | L     | Tota     | als      | 1           |              | 169                 | 169              | 31                    |                |             | 100                    |                      |                                                  |                |     | 100   | 22             | 8                    | 50       | 0.58                   | 3.4                  |
| NF                | L     |          | 2M       | 95          | 5.4          | 213                 | 202              | 37                    |                |             | 28                     | 72                   |                                                  |                |     | 100   | 40             | 18                   | 530      | 2.66                   | .4                   |
| NF                | L     |          | 3M       | 5           |              | 10                  | 10               | 2                     | 1              | 00          |                        |                      |                                                  |                | 100 |       | 32             | 6                    | 50       | 0.71                   | .2                   |
| NF :              | L '   | Tota     | ls       | 2           | 5.1          | 223                 | 211              | 39                    |                | 5           | 27                     | 68                   | <del>                                     </del> |                | 5   | 95    | 37             | 14                   | 370      | 2.10                   | .6                   |
| Туре Т            | Total | ls       |          |             | .9           | 13,714              | 13,588           | 2,514                 |                | 72          | 26                     | 2                    | 4                                                | 7              | 12  | 77    | 32             | 8                    | 85       | 0.67                   | 159.6                |

# Big Bell 341-12-06

## Volume Summary (Shown in MBF) September 2011

**Area 1: Modified Clearcut (112 Acres)** 

| SPECIES     |               | 2 SAW | 3 SAW | 4 SAW | CAMPRUN | TOTAL |
|-------------|---------------|-------|-------|-------|---------|-------|
| Douglas-fir | Cruise Volume | 1,255 | 1568  | 281   | 0       | 3,104 |
|             | In-Growth     |       |       |       |         |       |
| -2%         | Hidden D&B    | (25)  | (31)  | (6)   | (0)     | (62)  |
|             | Total         | 1,230 | 1,537 | 275   | 0       | 3,042 |
|             | % Total       | 40    | 51    | 9     | 0       |       |

| SPECIES   |               | 2 SAW | 3 SAW | 4 SAW | CAMPRUN | STOTAL |
|-----------|---------------|-------|-------|-------|---------|--------|
| Red alder | Cruise Volume |       |       |       | 61      | 61     |
|           | In-Growth     |       |       |       |         |        |
| -2%       | Hidden D&B    |       |       |       | (1)     | (1)    |
|           | Total         |       |       |       | 60      | 60     |
| _         | % Total       |       |       | _     | 100     | -      |

Areas 2 & 3: Partial Cut - Moderate (185 Acres)

|             | 1 0 000 1/10 000 01 | 100 1101 00 | 4     |       |         |       |
|-------------|---------------------|-------------|-------|-------|---------|-------|
| SPECIES     |                     | 2 SAW       | 3 SAW | 4 SAW | CAMPRUN | TOTAL |
| Douglas-fir | Cruise Volume       | 612         | 1,551 | 280   | 0       | 2,443 |
|             | In-Growth           |             |       |       |         |       |
| -2%         | Hidden D&B          | (12)        | (31)  | (6)   | (0)     | (49)  |
|             | Total               | 600         | 1,520 | 274   | 0       | 2,394 |
|             | % Total             | 25          | 63    | 10    | 0       |       |

Area 4: Right-of-Way (2 Acres)

| 121 000 10 211 2110 01 11 | /             |       |       |       |         |       |
|---------------------------|---------------|-------|-------|-------|---------|-------|
| SPECIES                   |               | 2 SAW | 3 SAW | 4 SAW | CAMPRUN | TOTAL |
| Douglas-fir               | Cruise Volume | 15    | 38    | 7     | 0       | 60    |
|                           | In-Growth     |       |       |       |         |       |
|                           | Hidden D&B    | (1)   | (1)   | (1)   | (0)     | (3)   |
|                           | Total         | 14    | 37    | 6     | 0       | 57    |
|                           | % Total       | 25    | 65    | 10    | 0       |       |

There may be negligible volumes of western hemlock and red alder within the R/W

# **Residual Stand Specifications**

# Big Bell 341-12-06

### AREA 2

Residual QMD assumption (from cruise leave tree information) -  $\underline{\phantom{a}18}$ . Target Relative Density -  $\underline{\phantom{a}31}$ 

|                         | Minimum | Target | Maximum |
|-------------------------|---------|--------|---------|
| <b>Relative Density</b> | 28      | 31     | 33      |
| Basal Area              | 120     | 130    | 140     |
| Trees per Acre          | 68      | 74     | 79      |

$$RD = BA/\sqrt{DBH}$$
  
 $BA = \sqrt{DBH}(RD)$   
 $BA/tree = (\pi r^2)/(144)$   
 $TPA = (BA/acre)/(BA/tree)$ 



PORTIONS OF SECTIONS 1, 2, 3, T02N, R06W, SECTIONS 34, 35, T03N, R06W, W.M WASHINGTON COUNTY, OREGON

> Forest Grove District GIS October 2011

This product is for informational use and may not be suitable for legal, engineering, or surveying purposes.

> 1:12,000 1 inch = 1,000 feet

| 0 | 500 | 1,000 |
|---|-----|-------|
|   |     | Feet  |



|        | TRACTOR | CABLE |
|--------|---------|-------|
| AREA 1 | 1 77    | 35    |
| AREA 2 | 2 70    | 107   |
| AREA 3 | 3 0     | 8     |
| AREA 4 | 1 2     | 0     |
|        |         |       |
| TOTAL  | 149     | 150   |

APPROXIMATE NET ACRES

| $\leqslant$ | Cable Logging Area   |
|-------------|----------------------|
|             | Tractor Logging Area |
|             | Non Thinnable Area   |

**Tractor Landing** 



Snag Creation Area Reforestation Area

Right-of-Way Boundary

80 foot contour