PART IV: OTHER INFORMATION

State Timber Sale Contract No. 341-10-23 Big 3 Junction

NOTICE OF TRANSFER OF STATE TIMBER

Instruct	ions	629;-Form-301-010				
	te Section 1. Mark the box which at ignatures.	oplies to you/your company in Section 2. Complete Section 3 and				
SECTIO	ON 1					
.On:		, state timber sale purchaser (Transferor)				
		sold, exchanged or otherwise transferred to				
	· .	, (Transferee) state timber originating from State				
Timber	Sale Contract No.	· · · · · · · · · · · · · · · · · · ·				
Transfei	ree hereby certifies that they:					
(a)	Will not export the unprocessed st	ate timber which is the subject of this transaction;				
(b)		otherwise convey the unprocessed timber which is the subject of n without first obtaining a like certification from that person.				
(c)		1-005 through 045 from purchasing state timber or logs directly a sale of Western Red Cedar for domestic processing.				
SECTIO	ON 2					
	Have not exported unprocessed ti	mber originating from private lands in Oregon in the last 24 months				
	This is a sale of hardwood logs for	domestic processing.				
	This is a sale of Western Red Ced	ed Cedar for domestic processing.				
		gs processed at domestic pulp mills, domestic chip plants or other se of conversion of the logs into chips.				
SECTIO	ON 3					
certificat	ies understand that falsely entering ion is a violation of the Forest Cons 31, and is subject to any and all per	into this certification, or failure to comply with the terms of this ervation and Shortage Relief Act of 1990 and OAR Chapter 629, nalties contained therein.				
Transfer	or:	Transferee:				
Signed		Signed				
Title	WYTH COURT OF THE	Title				
Dated	Add 1 als 0 11 a a 2 A 1 a 2 A 1 a 2 A 1 a 2 A 1 a 2 A 1 a 2 A 1 a 2 A 1 a 2 A 1 a 2 A 1 a 2 A 1 a 2 A 1 a 2 A	Dated				
[Note 005]		definition of unprocessed timber is the same as in OAR 629-31-				
Mail To:	State Forester 2600 State Street Salem, OR 97310					

Notice of Transfer of State Timber Form 301-019 doc/Jaz B (SF)

Written Plan

For

Big Three Junction

Timber Sale; # 341-10-023

Timber Harvest

LEGAL DESCRIPTION: Portions of sections 28, 29, 31, 32, and 33, T04N, R07W, WM, Clatsop County, Oregon.

PROTECTED RESOURCE: The North Fork Cronin Creek, a large Type F stream.

DESCRIPTION OF THE AREA: The North Fork Cronin Creek flows East to West into Cronin Creek. The North Fork is adjacent to the southern boundary of area 1 and the west/northwest boundary of area 2 within the timber sale. Vegetation within the RMA is mostly alder and salmonberry with a few scattered conifer.

Many of the tributary streams within the sale area were found to be dry with the exception of the stream found in area 2. Steep and very steep slopes are located throughout the sale areas.

PROTECTION MEASURES: The North Fork Cronin Creek has been entirely posted outside of the timber sale areas. No timber will be cut within at least 150 feet of the North Fork Cronin Creek Type F aquatic zone. No Timber will be cut within 50 feet of the Perennial Type N aquatic zone.

Trees shall be directionally felled so that they do not fall or slide into the protected aquatic zone.

Cable corridors through the RMA will be spaced at a minimum of 100 foot intervals.

Reviewed by: Cik Marcy Date: 3-9-10

Erik Marcy

Unit Forester

Prepared by Tara Carlson

December 9, 2009

"STEWARDSHIP IN FORESTRY"

District: Forest Grove

Date:

April 20, 2010

cost summary

	Conifer	Hardwood	Total
Gross Timber Sale Value	\$1,021,575.60	\$390,461.75	\$1,412,037.35
		Project Work:	\$(103,888.00)
		Advertised Value:	\$1,308,149.35

4/20/10

"STEWARDSHIP IN FORESTRY"

District: Forest Grove

Date:

April 20, 2010

timber description

Location: Portions of Sections 28, 29, 30, 31, 32, and 33, T4N, R7W, W.M., Clatsop County,

Oregon.

Stand Stocking:

20%

SpecieName	AvgDBH	Amortization (%)	Recovery (%)
Douglas - Fir	17	. 0	98
Western Hemlock / Fir	20	0	98
Sitka Spruce	41	0	98
Alder (Red)	13	0	95
Maple	17	0	95

Volume by Grade	28	3S	4S	Camprur	Total
Douglas - Fir	1,112	1,539	545	0	3,196
Western Hemlock / Fir	618	447	105	0	1,170
Sitka Spruce	34	8	1	0	43
Alder (Red)	0	0	0	1,289	1,289
Maple	0	0	0	68	68
Total	1,764	1,994	651	1,357	5,766

4/20/10 2

"STEWARDSHIP IN FORESTRY"

District: Forest Grove

Date: April 20, 2010

comments: Pond Values Used: 1st Quarter Calendar Year 2010.

Western Red Cedar and Other Cedars Stumpage Price = Pond Value minus Logging Cost \$631/MBF = \$820/MBF - \$189/MBF

SCALING COST ALLOWANCE = \$5.00/MBF

FUEL COST ALLOWANCE = \$3.00/Gallon

HAULING COST ALLOWANCE Hauling costs equivalent to \$700 daily truck cost.

Other Costs (with Profit & Risk to be added):
Brand and Paint: \$1.00/MBF x 5,766 MBF = \$5,766
Intermediate Supports: 10 @ \$100/support = \$1,000
Snag Creation: 208 Snags in Areas 1 & 2 @ \$15/snag = \$3,120
TOTAL Other Costs (with Profit & Risk to be added) =\$9,886

Other Costs (No Profit & Risk added):
Machine Time for Slash Piling: 35 hours @ \$150/hour = \$5,250

Longview Timber Road Use Fees(4-7 Ridge Haul Route) \$300 Fee plus \$0.20/mbf/mile: \$300 + (Area 1 approximately = .20 x 3292 mbf x 2.89 miles) + (Area 2 approximately = .20 x 2609 mbf x 10.6 miles) = 7,433.86 TOTAL Other Costs (No Profit & Risk added) = \$12,683.86

4/20/10 3

"STEWARDSHIP IN FORESTRY"

Timber Sale Appraisal Big 3 Junction Sale 341-10-023

Forest Grove April 20, 2010 Date:

logging conditions

combination#: 1

District:

Douglas - Fir 85.00%

Western Hemlock / Fir 85.00% Sitka Spruce 85.00% Alder (Red) 85.00%

Maple 85.00%

yarding distance: Medium (800 ft) downhill yarding: Cable: Medium Tower >40 - <70 logging system: Process: Stroke Delimber

tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF

loads / day: 4,200 10.0 bd. ft / load:

cost / mbf: \$79.62

machines: Log Loader (A)

Stroke Delimber (A) Tower Yarder (Medium)

combination#: 2

Douglas - Fir 15.00%

Western Hemlock / Fir 15.00% Sitka Spruce 15.00% Alder (Red) 15.00% Maple 15.00%

yarding distance: Short (400 ft) downhill yarding: Process: Manual Delimbing logging system: Shovel

tree size: Mature Private Forest / Regen Cut (250 Bft/tree), 6-11 logs/MBF

loads / day: 12.0 bd. ft / load:

cost / mbf: \$49.69

machines: Shovel Logger

4/20/10 4

"STEWARDSHIP IN FORESTRY"

District: Forest Grove

Date: April 20, 2010

logging costs

Operating Seasons:

2.00

Profit Risk:

10.00%

Project Costs:

\$103,888.00

Other Costs (P/R):

\$9,886.00

Slash Disposal:

\$0.00

Other Costs:

\$12,683.86

Miles of Road

Road Maintenance:

\$0.00

Dirt	Rock (Contractor)	Rock (State)	Paved	
0.0	0.0	12.0	0.0	

Hauling Costs

Species	\$/MBF	Trips/Day	MBF / Load
Douglas - Fir	\$0.00	2.0	4.2
Western Hemlock / Fir	\$0.00	2.0	3.8
Sitka Spruce	\$0.00	2.0	3.8
Alder (Red)	\$0.00	2.0	3.0
Maple	\$0.00	2.0	3.0

4/20/10 5

"STEWARDSHIP IN FORESTRY"

District: Forest Grove

Date:

April 20, 2010

logging costs breakdown

Logging	Road Maint	Fire Protect	Hauling	Other P/R appl	Profit & Risk	Slash Disposal	Scaling	Other	Total
Douglas -	Fir								
\$75.13	\$10.04	\$1.52	\$77.28	\$1.71	\$16.57	\$0.00	\$5.00	\$2.20	\$189.45
Western F	lemiock /	Fir							
\$75.13	\$10.04	\$1.52	\$85.40	\$1.71	\$17.38	\$0.00	\$5.00	\$2.20	\$198.38
Sitka Spru	ice				·				
\$75.13	\$10.04	\$1.52	\$85.40	\$1.71	\$17.38	\$0.00	\$5.00	\$2.20	\$198.38
Alder (Red									
\$75.13	\$10.33	\$1.52	\$111.36	\$1.71	\$20.00	\$0.00	\$5.00	\$2.20	\$227.25
Maple									
\$75.13	\$10.33	\$1.52	\$111.36	\$1.71	\$20.00	\$0.00	\$5.00	\$2.20	\$227.25

Specie	Amortization	Pond Value	Stumpage	Amortized
Douglas - Fir	\$0.00	\$444.37	\$254.92	\$0.00
Western Hemlock / Fir	\$0.00	\$369.83	\$171.45	\$0.00
Sitka Spruce	\$0.00	\$343.84	\$145.46	\$0.00
Alder (Red)	\$0.00	\$520.00	\$292.75	\$0.00
Maple	\$0.00	\$420.00	\$192.75	\$0.00

4/20/10 6

"STEWARDSHIP IN FORESTRY"

District: **Forest Grove** Date:

April 20, 2010

summary

Amortized

Specie	MBF	Value	Total
Douglas - Fir	MIDI	\$0.00	\$0.00
1 1	<u> </u>		,
Western Hemlock / Fir	0	\$0.00	\$0.00
Sitka Spruce	0	\$0.00	\$0.00
Alder (Red)	0	\$0.00	\$0.00
Maple	0	\$0.00	\$0.00

Unamortized

Specie	MBF	Value	Total
Douglas - Fir	3,196	\$254.92	\$814,724.32
Western Hemlock / Fir	1,170	\$171.45	\$200,596.50
Sitka Spruce	43	\$145.46	\$6,254.78
Alder (Red)	1,289	\$292.75	\$377,354.75
Maple	68	\$192.75	\$13,107.00

Gross Timber Sale Value

Recovery:

\$1,412,037.35

Prepared by: Tara Carlson

Phone: 503-325-5451

7 4/20/10

TIMBER SALE SUMMARY

Big 3 Junction Contract No. 341-10-023

- 1. Type of Sale: Areas 1 and 2 are Modified Clearcuts (MC). The sale is recovery, sealed bid auction.
- 2. Revenue Distribution: 100% BOF, Clatsop County.
- 3. <u>Sale Acreage</u>: Area 1 is 112 net acres of (MC). Area 2 is 103 net acres of (MC). Acreage was determined using ERSI ArcMap GIS software.

<u>SPECIES</u>	2 SAW	3 SAW	4 SAW	<u>Camprun</u>	<u>SPECIES</u> TOTAL
Douglas-fir	1,112	1,539	545		3,196
Western Hemlock	618	447	105		1,170
Red Alder				1,289	1,289
Sitka Spruce	34	8	1		43
Big Leaf Maple				68	68
TOTAL:	1,764	1,994	651	1,357	5,766

4. <u>Cruise Data</u>: Areas 1 and 2 were contract cruised. Cruised data from the applicable stands were inputted into the Super Ace 2004 program. No additional plots were taken. The plots were cruised using a 33.6 BAF. Take trees and saw grades were assigned based on the height, diameter and damage/defect measurements provided by the cruise and observations made in the field. Volumes and statistics were generated from plot data by using the Super Ace 2004 program. Cruise statistics:

Area 1: CV 49.8% and SE 11.1%.

Area 2: CV 54.9% and SE 11.7%.

- 5. <u>Timber Description</u>: Area 1 is a naturally regenerated, unmanaged mixed stand of Douglas-fir, Western Hemlock, and Red Alder with a minor component of Sitka spruce and other hardwoods. Area 2 is also a naturally regenerated, unmanaged stand with Douglas-fir and Red Alder as the main component. A minor component of other conifer and hardwoods is found throughout the unit. The stands ages range from approximately 55-75 years old. The average DF take-tree DBH for all areas is approximately 17 inches. Estimated DF volume for Area 1 averages 15.6 MBF per acre and Area 2 averages 14.3 MBF. Total take tree volume will average about 27.6 MBF/acre.
- **6.** Topography and Logging Method: The topography ranges from 800ft to 2000ft with average slope of approximately 45% becoming as steep as 75% in cable yarding areas. The sale areas are roughly 85% cable yarding and 15% ground based yarding.

7. Access: The sale area is accessed two ways, one via Highway 26 to the 101 road and 108 road, which are both currently rocked roads. The other access route is via Highway 26 to Lower Nehalem Road through Spruce Run Campground and onto the 4-7 Ridge Road, which is currently a rocked road. There is one gate located on the 101 Road, one on the 108 Road, and one on the 4-7 Ridge Road. These gates will require a key or combination, which can be obtained from the Forest Grove District Office.

8. Projects:

Project No. 1	Constructing 2.33 miles of new road:	\$53,084.41
Project No. 2	Surfacing of roads with 3,910 cyd ³ of rock:	\$43,330.08
Project No. 3	Grass seed and fertilize:	\$1,125.06
Project No. 4	Roadside Brushing:	\$120.00
Move in cost:	· ·	

Area 1: \$4,877.64 Area 2: \$1,350.45

Total All Project Cost: \$103,887.64

Total Credits: \$103,888.00

9. Other Costs:

Other Costs with (P/R):

	Brand and paint (\$1.00/MBF):	\$ 5,766
♦	Intermediate Supports/ Tail Tree Rigging (10 @ \$100.00 each):	\$ 1,000
	Snag Creation (208 trees @ \$10/Snag):	\$ 3,120
Tot	tal (P/R):	\$ 9,886

Other Costs (No P/R):

To	al (No P/R):	\$ 12,683.86
	Longview Timber Road Use Fees for 4-7 Ridge Haul Route:	\$ 7,433.86
❖	Skid Trail Closure/Slash Piling (35 hrs. @ \$150.00/hr):	\$ 5,250

Pre-Operations Report

Operation Name:

Big 3 Junction

Management Basin:

Lower Nehalem

100% BOF %

Sale Quarter:

2 100

County (%):

Clatsop

CSL %

I. VOLUME AND VALUE SUMMARY

Table 1. Types, Acres, and Value

	x. x y p co, 1 x c x	co, arra raide						
Area	Harvest	Anticipated	Gross	Net	MBF/	MBF/Area ¹	\$/MBF ²	dt / A
711ea	Туре	Product	Acres	Acres	Acre ¹	MDF/Aiea	₱/ MDF²	\$/Area
1	MC	DF,RA,WH-M	113	109	29	3,061	\$196.42	\$601,255
2	MC	DF,RA,WH-M	108	99	25	2,446	\$196.42	\$480,452
3	R/W	DF,RA,WH-M	7	7	25	181	196.42	\$35,552
Total			124	107		5,688		
1. Es	timated harves	t volume per acre c	Gross V	7alue	\$1,117,259			

^{2.} Estimated 'stumpage value' (excluding Project Costs)

2,000	
Gross Val	ue \$1,117,259
Project Co	sts \$103,888
Net Valu	e \$1,013,371

II. PHYSICAL DESCRIPTION OF OPERATION AREA

Table 2. Physical Characteristics of Operation Area¹

Location ^{2*} : T4N, R7W, Sections 28	, 29, 30, 31, 32, and 33
Rainfall:	Elevation: 480-2,040
Site Index:	Aspect: Area 1-SE, Area 2-N
Vegetation Zone:	Other:
Soils: Rye and Killam	

Complete the required sections, indicated with an asterisk (*). The other sections should be completed if they influence management decisions regarding this operation, including decisions regarding roads and reforestation. If the characteristic is unique to an Area, then identify the Area.

III. CURRENT STAND CONDITION:

Table 3. Stand Inventory Information

Area	Stand ID	Measured /Imputed¹	Species ²	Age ³	TPA	DBH	BA	SDI	Net Acres
1	36327	M	RA,DF	67	190	13	162	45	24
1	36329	Ι	DF,RA	67	123	14	130	35	46
1	36330	I	DF,WH,SS	67	69	16	92	24	27
1	38536	Ι	WH,DF	60	212	13	184	51	12
2	36327	M	RA,DF	67	190	13	162	45	30
2	36358	I	RA,WH	55	190	14	203	54	21
2	36359	M	RA,WH	55	190	14	203	. 54	26
2	36361	I	RA,WH	40	190	14	203	54	22

Identify the source of stand inventory information. Use the following codes: M = Measure SLI data, I = Imputed SLI data, P = Pre-Cruise Plots, O = other (if other, describe below).

Short description of operation location from a commonly known land mark (i.e. Two miles east of Bald Mtn.) or legal description.

List the predominant species (i.e. those that compose >10% of the BA). Use the standard SLI species codes.

Stand age is based on the birth year determined by the district.

Table 4. Additional Stand Information

Area	Stand ID	Snags/ Acre ¹	Down Wood / Acre²	% Ground Cover	Predominant Understory Vegetation ³	Forest Health Issues ⁴
1	36327	n/a	n/a	100	Sword Fern, Vine Maple, Salal	
1	36329	n/a	n/a	100	Sword Fern, Vine Maple, Salal	
1	36330	n/a	n/a	100	Sword Fern, Vine Maple, Salal	
1	38536	n/a	n/a	100	Sword Fern, Vine Maple, Salal	
2	36327	n/a	n/a	100	Sword Fern, Vine Maple, Salal	
2	36358	n/a	n/a	100	Sword Fern, Vine Maple, Salal	
2	36359	n/a	n/a	100	Sword Fern, Vine Maple, Salal	
2	36361	n/a	n/a	100	Sword Fern, Vine Maple, Salal	

- 1. Identify the number of hard snags per acre (decay classes 1 and 2).
- 2. Identify the cubic feet per acre of hard down wood (decay classes 1 and 2)
- Identify the three most predominant species or those that will have the greatest impact on management decisions. Include the
 percent cover of each species in parenthesis (). For example Sword Fern (40).
- 4. If "yes", describe forest health issues below, including "in unit" invasive species.

IV. DESIRED FUTURE CONDITION/VISION:

Table 5. Stand Structure Information

Area	Stand ID	Current	Post Harvest ¹	Desired Future	Net Acres
1	36327	UDS	REG	GEN	24
1	36329	CSC	REG	GEN	46
1	36330	CSC	REG	GEN	27
1	38536	CSC	REG	GEN	. 12
2	36327	UDS	REG	GEN	30
2	36358	CSC	REG	GEN	21
2	36359	UDS	REG	GEN	26
2	36361	CSC	REG	GEN	22

^{1.} The stand is expected to develop into this condition in the five to ten years after this operation is completed.

(Describe the Vision for the stand – Given the current and desired future condition for these stands, describe the intent of applying the management prescription identified in Section V.)

The current stands are unproductive. The regeneration harvests in these areas will remove the slow-growing alder and under-stocked conifer and replace them with new more productive stands. The sale areas will be planted back with a mixture of western hemlock, noble fir, SNC resistant Douglas-fir, and cedar. Throughout the life of the stands, they will be evaluated for pre-commercial and commercial thinning, as well as other intensive management practices, in order to maximize the production of timber.

A small portion (about 4 acres) of Area 1 is designated in the DFC as OFS. This is a mapping error and will be removed from the landscape design and categorized as general. These acres will be reallocated to a portion of the same riparian area that is currently designated a General.

V. PROPOSED MANAGEMENT PRESCRIPTION:

Table 6. Prescription¹

Area	Harvest Type	Harvest	Residual	Residual	Residual	Residual
IIICa	Traivest Type	Species	Species	TPA	BA	SDI

1	MC	DF,WH,RA	WRC,DF ,WH,RA	5		
2	MC		WRC,DF ,WH,RA	5	um har	

^{1.} If there are any special consideration with this prescription (i.e. reserve species, diameter limits, etc.) describe below

Table 7. Snag and Down Wood

Area				Sna	igs Creation	1			Anticipated
		Snags				Arrang	ement		Down
	Method ²	/Acre	DBH	Species	Scattered	Clumps in	In Unit	Adjacent	Wood ⁵ (ft3)
		/11010			in Unit	Unit	RMA ³	RMA ⁴	W 00d (113)
1	Girdling	2	18	DF,WH	X			X	750
2	Girdling	2	18	DF,WH	X			X	750

^{1.} Snag creation is optional; complete this section, if snags are to be actively created with this operation. If leaving additional green trees to become snags, enter information into Table 8 (Green Trees).

2. Methods include: None, Topping, Girdling, Other (if other, describe below).

3. Snags are left in or adjacent to an RMA "within" the harvest area (both sides of the stream are in the harvest Area).

4. Snags are left in or adjacent to an RMA that forms the boundary of the harvest Area (i.e. adjacent to the harvest Área).

5. Estimate the amount of hard down wood per acre that can be expected to be in the Area after harvest has been completed. If a regeneration harvest varies from the FMP standard of 600 to 900 cubic feet per acre, describe the alternative strategy in the vision pathway (i.e. leaving extra green trees, etc.).

Table 8. Green Trees

			DBH			Gree	n Tree Arrang	ement ³	
Area	Purpose ¹	Species	Range	TPA ²	Scattered in Unit	Clumps in Unit	In Unit RMA ⁴	Adjacent RMA ⁵	Green Tree Area
1	FMP	DF,WRC, RA,WH	15-32"	5	X		X		X
2	FMP	DF,WRC, RA,WH	15-32"	5	X		X		X

Green trees can be left for several purposes within a unit including FMP Standards (NW and SW FMP - 5 trees/acres); supplementing snags, and supplementing down wood. Within an Area, list each purpose for green tree retention and the total if there is more than one purpose in that unit.

3. Green tree arrangement is described by their proximity to the harvest area of the sale.

4. Green trees are left in or adjacent to an RMA "within" the harvest area (both sides of the stream are in the harvest Area).

5. Green trees are left in or adjacent to an RMA that forms the boundary of the harvest Area (i.e. adjacent to the harvest Area).

Table 9. Pathway

Area		Reforestation		1	nmercial ming²	Partial Cut A ³	Partial Cut B ³	Regeneration Harvest ³
	Type ¹	Species	TPA	Age	TPA	Age	Age	Age
1	Initial	DF, WH,WRC	436	15	220	40		60
2	Initial	DF, WH,WRC	436	15	220	40		60

^{1.} Reforestation Types include: Initial, Underplanting, Patch (i.e. planting of patch cuts), Other (explain below).

2. Complete only for Regeneration Harvests.

3. Partial Cut and Regeneration Harvest

b. If this operation is a Regeneration Harvest; then identify the age of the anticipated harvest entries in the new plantation, including first two Partial Cuts and the next Regeneration Harvest.

^{2.} If the green trees left for the purpose of meeting the FMP Standard is either more or less than the standard, describe the rationale below.

If this operation is a Partial Cut Harvest, then identify the age that additional harvest entries are anticipated for this stand

Table 10. Site Preparation¹

Area	Site Prep			Other issue	es (Big Game	, Mtn. Beaver	s, SNC, etc)	
	Slash Treatment	Whole Tree Yarding	Chemical	Other ²	Vegetation	Animal	Insect & Disease	Other ²
1	Mechanical	X	X			Big game		
2	Mechanical	X	x			Big game		

Given the time between the Pre-Operations Report development and site preparation, it may necessary to enter TBD (To Be Determined), but anticipated actions should be identified, based on current knowledge of the site.

VI. HARVESTING AND ACCESS CONSIDERATIONS:

Table 11. Harvest System and Access Summary

Area	Harvest System		Slame (9/1)	Unit	Seasonal
	% Cable ¹	% Ground ¹	Slope (%)	Access ²	Access ³
1	80	20	5-80%	Simple	All Weather
2	80	20	10-80%	Simple	All Weather

^{1.} Estimate the harvest system to the nearest 20% (if less than 10% enter <10% or 0% if appropriate).

2. Unit access terms are "Established", "Simple", "Verified", and "Unverified".

3. All Weather, Dry Weather, or To Be Determined (IBD).

Are Easements required along haul route? 🛛 YES	□NO
If "ves", describe below easements that need to be obtained.	

ODF currently has easements on the 101 road with Stimson Lumber Co., and the 108 road with Longview Timber Corp. A road use permit is necessary for the 4-7 Ridge Road from Longview Timberlands, LLC in order to have access from Foss County Road.

Are property line surveys required for this operation? YES NO	
ff "yes", describe the lines to be surveyed, type of survey (i.e. section subdivision, refresh previously established line, etc	J.)
and length of survey.	,

Are Invasive Species present along the haul route?

YES NO

If "yes", describe below the management actions necessary to meet management goals for these species.

Table 12. Transportation Management Summary (Miles or Number of Crossings)

		Rocked Spur	Dirt Spur
		2.3	
		0.15	
10	2		
		· · · · · · · · · · · · · · · · · · ·	
		1N	
	10		0.15 10 2

^{1.} Identify the type and number of stream crossing (N) to be installed and the number of existing culverts to be replaced (R) (i.e. 7 N /5 R). If bridge construction or repair is required, describe below.

VII. AQUATIC RESOURCES AND WATER QUALITY:

^{2.} If "Other", describe below.

Table 13. Estimate of Known Stream Classifications within or adjacent to the Operation

Area ¹	Fish	Operating in	1	Non-Fish Bearing (Type N)			Unknown - Fish
	Bearing	Inner Zone	Large /	Small	H.E.R. /	Other	Presence Surveys
	(Type F)	of Type F³	Medium	Perennial	P.D.F.T ⁴	Otner	Required ⁵
1	3,030						None
2	6,310			X			None
Total	9,340			1,134			
Length ²							

- 1. Identify the stream classes (Fish Bearing, 4 types of Non-Fish Bearing, and Unknown) within or adjacent to each Area with an "X". An Area is "adjacent" to a stream if a portion of it is within the Inner or Outer Zone of the stream.
- 2. Enter the total length of each stream class within or adjacent to the Operation (i.e. total for all Areas).
- 3. If harvesting (other than cable corridors) is anticipated in the Inner Zone of Type F streams, describe the pathway to a 'mature forest condition' below.
- 4. High Energy Reach (H.E.R.) and Potential Debris Flow Tract (P.D.F.T.)
- 5. Identify whether fish presence surveys are necessary for the Area.

Table 14. Additional Stream Considerations

Area	Stream Name¹	Species Present	SAH Basin ²	Domestic Water Sources Present ³
1	North Fork Cronin Creek	None	None	None
2	North Fork Cronin Creek	None	None	None

- Enter the name of stream(s) within or adjacent to the Area. For the unnamed tributaries, list the name of the stream(s) that the tributaries flow into.
- 2. If the Area is in a SAH basin, enter the basin name; otherwise enter "None". Outside the north coast, enter NA.
- 3. If "yes", describe below the location and site protection strategies for these water sources

Potential Stream Habitat Improvement within or adjacent to this operation?

YES NO
If "yes", describe below the potential stream habitat improvement projects

The vast majority of green tree retention for the two modified clear-cuts will be concentrated around the North Fork Cronin Creek and in the buffers of the in-unit Type-N tributaries. There will be no operating in the inner zone in any portion of the sale areas. Due to difficult logging, actively managing the riparian zones towards a complex structure is not a viable option. There are however, pockets of large remnant conifers present in the riparian areas that did not burn in the 1945 fire. It is expected that these areas will acquire a more complex structure naturally over time.

VIII. WILDLIFE AND T&E SPECIES CONSIDERATIONS:

Table 15. Northern Spotted Owls - Surveys and Presence

Area	NSO Surveys Required ¹	Years Surveys Completed ²	Additional Surveys Planned ²	NSO Response ³
1 & 2	Yes	2007, 2008, 2009		none

- 1. Surveys are required if the Area contains NSO habitat, as determined by Area Wildlife Biologist. Enter "Yes" or one of the following codes when surveys are not required: "N.H" no habitat within the unit; "N.R." surveys of individual operations are not required (Klamath-Lake District only); "T.B." surveys are not required because the Area is within the Tillamook Burn (see NSO Policy); "HCP" covered by a Habitat Conservation Plan; "S.W." a survey waiver has been issue for another reason (explain below or attach the waiver).
- 2. Enter the years surveys completed or planned (i.e. 2008, 2009), not the number of years surveys completed or planned.
- 3. Response is based on surveys being conducted specifically for this operation (this table is not intended to include historic responses). If "yes", see the preliminary Biological Assessment for more information. If "yes" and a Biological Assessment is not required, explain below.

Is the Operation within an NSO Provincial Circle or Home Range?

YES
NO If "yes", attached the preliminary Biological Assessment.

Table 16. Marbled Murrelets - Surveys and Presence

Area	MM Surveys Are	Years Surveys	Additional	MM
	Required ¹	Completed ²	Surveys Planned ²	Observations ^{3, 4}
1 & 2	Yes	2007 and 2008		none

- 1. Survey are required if the Area contains or is adjacent (within 330 feet) of potential marbled murrelet habitat, as determined by Area Wildlife Biologist. Enter "Yes", or one of the following codes when surveys are not required: "N.H." no potential habitat within or adjacent to the Area; "O.Z." outside the Marbled Murrelet Survey Zone; "T.C." tree climbing was used (or planned) instead of the normal survey protocol; "HCP" covered by a Habitat Conservation Plan; "S.W." a survey waiver has been issue for another reason (explain below or attach the waiver).
- 2. Enter the years surveys completed or planned (i.e. 2008, 2009), not the number of years surveys completed or planned.
- 3. Marbled murrelet observations are based on surveys being conducted specifically for this operation (this table is not intended to include historic presence detections).
- 4. Enter the type of observation: None, Presence, Occupied, or Indeterminate (further surveys are required).

Is the Operation within a Marble Murrelet Management Area?

YES NO If "yes", attached the preliminary Biological Assessment.

Other Wildlife Considerations:

(Describe species with resource site protection rules defined Forest Practices Act/Rules and other species of concern that are known to be present in the vicinity of the operation and the associated management implications. Describe any special considerations for deer and elk habitat [such as seasonal road closures].) None.

T&E Plants:

Does the Oregon Natural Heritage Program database or field reconnaissance indicate the presence of known threatened or endangered plants near the operation?

YES
NO

The sale areas were also checked against local records in the Land Management Classification System (LMCS). No listed plants were indentified within or adjacent to the sale areas. (If "yes", list the known plants and describe the management implications.)

IX. SLOPE STABILITY AND GEOTECHNICAL ISSUES:

(Table 17 is completed by the Geotechnical Specialist)

Summary of Slope Stability Assessment

This assessment is based on analysis of USGS 1:24,000 topographic maps.

There are high landslide hazard locations scatted throughout the sale. The northern portion of Area 1 drains into an unnamed tributary of the Nehalem River. The remainder of the sale drains into the North Fork of Cronin Creek. The risk of landslides delivering directly from the sale to the unnamed tributary of the Nehalem River is low and to the North Fork of Cronin Creek is high. The northern portion of Area 1 and the western portion of Area 3 appear to be located on large, deep-seated landslide landforms.

X. RECREATION RESOURCES:

Table 18. Recreation Sites In the Vicinity of the Operation¹

Type of Recreation Site	In or Immediately	In the Vicinity of the	On the Anticipated Haul
or Facility	Adjacent¹ to the	Operation (1/4 mile)	Route

	Operation	
Motorized Trails		
Non-Motorized Trails		
Campgrounds		
Other Recreation Sites or		
Facilities		

If "existing" or "planned" is listed in any of the boxes, describe recreation site and the management implications; otherwise don't
write anything.

The sale areas are designated as Non-Motorized in the *Tillamook State Forest Comprehensive Recreation Plan* (1993). The sale has been reviewed by the District Recreation Coordinator. No trails were identified within or adjacent to the sale areas.

XI. CULTURAL RESOURCES:

Does the ODF Cultural Resources Inventory or field reconnaissance indicate the presence of cultural resources in and adjacent to this operation?

YES
NO

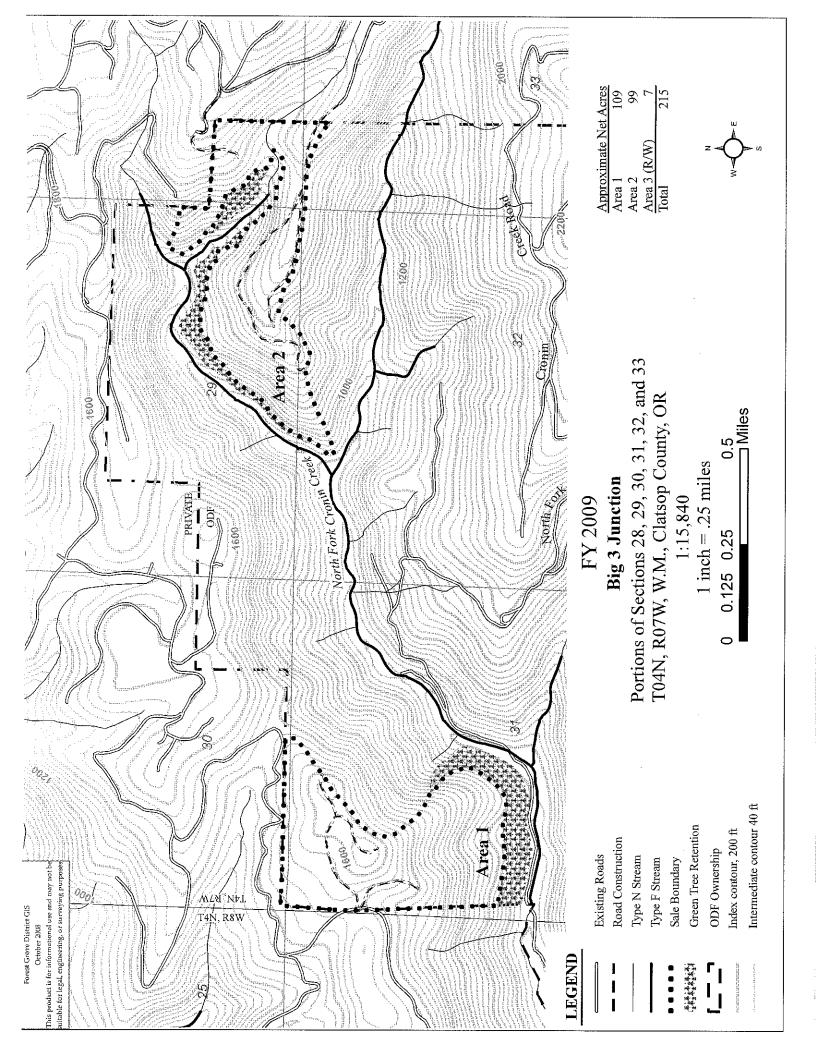
(Adjacent is defined as within 200 feet of the operation, including construction of new roads outside the operation Area boundaries. If "yes", describe the type of resource and the protection measures).

The Tillamook State Cultural Assessment does not list cultural sites within or adjacent to the sale boundaries.

XII. SCENIC RESOURCES:

The district has reviewed the scenic potential of vantage points in and around this operation. This review shows that this operation contains areas with an ODF Visual Classification of __3__ (if class 1 or 2, describe the view shed and management strategies used to achieve the visual objectives below).

XIII. OTHER RESOURCE CONSIDERATIONS:


Are there other resources present in or around this operation that need special consideration?

YES NO

(Other resources include, but are not limited to: power lines, buried cables, permanent plots, research areas, etc. If "yes", describe any resources or other special considerations not covered in another section.)

There is a property line between the State and private property on Areas 1 and 2. This will need to be clearly identified during sale preparation. A permit will also need to be obtained if guyline trees and/or tailholds are needed on the adjacent landowner, Longview Timber Co.

^{2. &}quot;Immediately adjacent" is defined as within 100 feet of the operations boundary.

PROJECT COST SUMMARY SHEET

Timber Sale: Big 3 Junction

Sale Number: 341-10-023

PROJECT NO. 1: ROAD CONSTRUCTION AND IMPROVEMENT

CONSTRUCTION

Road Segment	Length	Cost
A to B	49+50	\$26,430.40
C to D	22+75	\$9,568.67
F to G	9+50	\$3,046.29
H to I	21+75	\$6,963.73
J to K	9+00	\$3,400.15
L to M	10+50	\$3,675.18
	123+00	stations

2.33 miles

SUBTOTAL CONSTRUCTION

\$53,084.41

TOTAL PROJECT NO. 1 COST =

\$53,084.41

PROJECT NO. 2: SURFACING

Road Segment	Amount	Туре	Cost
A to B	2,321 cy	6" - 0	\$27,689.53
C to D	1,090 cy	6" - 0	\$9,328.20
F to G	499 cy	6" - 0	\$6,312.35
Total	3,910 cy	6" - 0	

TOTAL PROJECT NO. 2 COST =

\$43,330.08

PROJECT NO. 3: GRASS SEEDING, FERTILIZING

Grass seed and fertilize areas of disturbed soil.

\$1,125.06

TOTAL PROJECT NO. 3 COST =

\$1,125.06

PROJECT NO. 4: ROADSIDE BRUSHING

Brush Segment E-F 0.15 miles @ \$800.00 per mile \$120.00

TOTAL PROJECT NO. 4 COST =

\$120.00

MOVE IN Area 1

\$4,877.64

MOVE IN Area 2

\$1,350.45

TOTAL ALL PROJECTS TOTAL CREDITS

\$103,887.64 \$103,888.00

Timber Sale:	Big	3 Junc	tion			Timber	Sale No.	:	341-1	0-023
Road Segment:		A to B				Co	nstruction	: 49+50	stations	
								0.94	miles	
PROJECT NO. 1										
EXCAVATION									• • • • • • • • • • • • • • • • • • • •	******
Clearing and Grubbing (Scat	tter)			4.50	acres @		per acre =		\$6,304.50	
Balanced Road Construction	1		4	11.70	sta @	\$90.00	per sta =		\$3,753.00	
Endhaul										
Excavate & Load				500	су @		per cy =		\$900.00	
Drill & Shoot			1	,500	cy @		per cy =		\$6,750.00	
Haul			_	500	cy @		per cy =		\$880.00	
Place Fill			1	,500	cy @		per cy =		\$3,180.00	
Compact Waste Area				500	cy @		per cy =		\$125.00	
Construct Turnouts				6	ea@		per ea =		\$360.00	
Construct Turnaround				1	ea@		per ea =		\$75.00	
anding				1	ea@		per ea =		\$285.00	
Grade, Ditch, and Roll				37.00	sta @		per sta ≃		\$1,061.90	
Grade and Roll (Outslope)				2.50	sta @	\$27.20	per sta =	- EVOAUAT	\$340.00	******
CULVERTS - MATERI	IAIS&	INSTAL	ATION	J			IOIA	L EXCAVAI	TON COSTS≍	\$24,014.40
Culverts	.,			<u> </u>						
	F of 18"	\$2,376.00			0	LF of 24"	\$0.00	1		
	LF of 30"	\$0.00			0	LF of 36"	7			
-	LF of 42"	\$0.00			0	LF of 48"				
	LF of 54"	\$0.00			0	LF of 60"				
		\$2,376.00			·	2. 0. 00	Ψ0.0	-		
Culvert Markers										
4 mar		\$40.00	_							
									RT COSTS =	\$2,416.00
					ı	PROJEC	T NO. 1	TOTAL	. COST = .	\$26,430.40
PROJECT NO. 2:	·									
SURFACING	8	" deep =	42 cy/s	ta						· · · · · · · · · · · · · · · · · · ·
	2,079	cy of	6" - 0	" @		\$11.93	per cy =		\$24,802.47	
Curve Widening	24	cy of	6" - 0	@			per cy =		\$286.32	
urnaround (1)	14	cy of	6" - 0	@			per cy =		\$167.02	
urnouts (6)	84	cy of	6" - 0	@			per cy =		\$1,002.12	
. ,	120	cy of	6" - 0	@			per cy =		\$1,431.60	
anding (2)		→ =-		9			3	•	4.,.0,.0	
anding (2) Total =										
Total =	2,321	cy of	6" - 0							
Total =	2,321	cy of	6" - 0		ī	PROJEC	TNO	TOTAL	COST =	\$97 600 <i>59</i>
Total =	2,321	cy of	6" - 0		į	PROJEC	T NO. 2	TOTAL	COST =	\$27,689.53
Total =	2,321	cy of	6" - 0		i	PROJEC	T NO. 2	TOTAL	COST =	\$27,689.53
				2.25 acr			per acre =	TOTAL	*450.00	\$27,689.53
Total = 2				2.25 acr	es @	\$200.00	per acre =		\$450.00	
Total = 2				2.25 acr	es @	\$200.00	per acre =			\$27,689.53 \$450.00

Timber Sale:	Ві	g 3 Junc					r Sale No.		341-10	0-023
Road Segment:		C to D	***			Co	nstruction	: 22+75	stations	
_		······································	• • • • • • • • • • • • • • • • • • • •					0.43	miles	
PROJECT NO. 1										
EXCAVATION				***************************************						· · · · · · · · · · · · · · · · · · ·
Clearing and Grubbing (Sc	atter)			2.08	acres @	\$1,078.00	per acre =		\$2,242.24	
Balanced Road Construction	n		1	12.15	sta @	\$90.00	per sta =		\$1,093.50	
Drift				4.00	sta @	\$150.00	per sta =		\$600.00	
Rock Excavation										
Drill & Shoot			1,	,000	cy @		per cy =		\$4,500.00	
Construct Turnouts				2	ea @		per ea =		\$120.00	
Construct Turnaround				1	ea @		per ea =		\$75.00	
Landing				1	ea @		per ea =		\$285.00	
Grade, Ditch, and Roll			2	22.75	sta @	\$28.70	per sta =		\$652.93	
							TOTA	AL EXCAVA	TION COSTS=	\$9,568.67
						PROJEC	CT NO.	1 TOTA	L COST =	\$9,568.67
PROJECT NO. 2: SURFACING	8	" deep =	42 cy/s	ta				**************************************		
C to D (jaw run)	456	cy of	6" - 0	— @		\$12.48	per cy =		\$5,690.88	
C to D (pit run)	500	cy of	6" - 0	ē.		\$3.93	per cy =		\$1,965.00	
Curve Widening	12	cy of	6" - 0	@		\$12.48	per cy =		\$149.76	
Turnaround (1)	14	cy of	6" - 0	@		\$12.48	per cy =		\$174.72	
Turnouts (2)	28	cy of	6" - 0	@			per cy =		\$349.44	
Junction	20	cy of	6" - 0	@		\$12.48	per cy =		\$249.60	
Landing (1)	60	_ cy of	6" - 0	@		\$12.48	per cy =		\$748.80	
Total =										
	1,090	cy of	6" - 0							
						PROJEC	CT NO. 2	2 TOTA	L COST =	\$9,328.20
PROJECT NO. 3:										
Grass seed and fertilize are		rbed soil.		1.04 acr	es @	\$200.00	per acre =		\$208.00	
					ļ	PROJEC	CT NO. 3	3 TOTA	L COST =	\$208.00
							-	ΓΟΤΔΙ	COST =	\$19,104.8
							ļ		=	Ψ10,107.0

Timber Sale:	Big 3 Junction			Timber Sale No. :	341-10-023			
Road Segment:	E to F			Improvement :	8+00 0.15			
PROJECT NO. 4							**************************************	
Roadside Brushing Mechanical Roadside Brushin	g	0.15	miles @	\$800.00 per mile =	то	\$120.00 TAL COST=	\$120.00	

TOTAL COST = \$120.00

Timber Sale:	Biç	g 3 Junc	tion			Timbe	r Sale No.	:	341-1	0-023
Road Segment:		F to G				Co	nstruction	: 9+50	stations	***************************************
_								0.18	miles	
PROJECT NO. 1										
EXCAVATION										
Clearing and Grubbing (S	catter)			0.88	acres @	\$1,078.00	per acre =		\$948.64	
Balanced Road Construct				9.50	sta @		per sta =		\$855.00	
Construct Turnouts				1	ea@	\$60.00	per ea =		\$60.00	
Construct Turnaround				1	ea @		per ea =		\$75.00	
Landing				1	ea @		per ea =		\$285.00	
Grade, Ditch, and Roll				9.50	sta @	\$28.70	per sta =	-VCA\/AT	\$272.65 ON COSTS=	\$2.40¢.20
CULVERTS - MATE	RIALS &	INSTALI	OITA	1			TOTAL	=XCAVATI	ON CO313-	\$2,496.29
Culverts										
30	LF of 18"	\$540.00			0	LF of 24')		
0	LF of 30"				0	LF of 36"				
0	LF of 42"	•			0	LF of 48"				
0	LF of 54"	***************************************			0	LF of 60"	\$0.00)		
		\$540.00								
Half Rounds		**								
0	LF of 21"									
0	LF of 30"	\$0.00	_							
Culvert Marke	are	Ψ0.00								
	markers	\$10.00								
							TOTA	AL CULVE	RT COSTS =	\$550.00
					PF	ROJECT	NO. 1 7	TOTAL	COST =	\$3,046.29
					· . · · · · · · · · · · · · ·	·····			•	
PROJECT NO. 2	····									
SURFACING	8	" deep =	42 cy/s			040.00			A A A	
to G	399	cy of	6" - 0	@			per cy =		\$5,047.35	
Curve Widening	12 14	cy of	6" - 0 6" - 0	@			per cy =		\$151.80 \$177.10	
Furnaround (1) Furnouts (1)	14	cy of cy of	6" - 0	@			per cy =		\$177.10 \$177.10	
	60	cy of	6"-0	@ @			per cy =		\$177.10 \$759.00	
landing (1)		. 5, 5,		ي	•	ψ1 ∠. Ψ	, or oh –		Ψ, υυ.υυ	
_anding (1) Total =			CII O							
- · · · · · · · - · · · · - · · · · · - ·	499	cy of	6" - 0							
_anding (1) Total =	499	cy of	6 - 0		PF	ROJECT	NO. 2 T	OTAL	COST =	\$6,312,35
- · · · · · · · - · · · · - · · · · · - ·	499	cy of	6 - 0		PF	ROJECT	NO. 2 T	OTAL	COST =	\$6,312.35
Total = Total			6 - 0					TOTAL		\$6,312.35
-			6 - 0	0.44 ac			per acre =	TOTAL	\$88.00	\$6,312.35
Total = Total			6-0	0.44 ac	cres @	\$200.00	per acre =			
Total = Total			5-0	0.44 ad	cres @	\$200.00	per acre =	TOTAL	\$88.00	\$6,312.35 \$88.00 \$9,446.64

Timber Sale:	Big 3 Junction		Timbe	r Sale No. :	341-10-023		
Road Segment:	H to I		Construction :			21+75 stations 0.41 miles	
PROJECT NO. 1							
EXCAVATION							
Clearing and Grubbing (Sc		2.00	acres @		per acre =	\$2,802.00	
Balanced Road Construction	on	21.75	sta @		per sta =	\$1,957.50	
Construct Turnouts		2	ea @		per ea =	\$120.00	
Construct Turnaround		1	ea @		per ea =	\$75.00	
Landing		1	ea @		per ea =	\$285.00	
Grade, Ditch, and Roll		21.75	sta @	\$28.70	per sta =	\$624.23	
CULVERTS - MATER	RIALS & INSTALLAT	ION			TOTAL E	XCAVATION COSTS=	\$5,863.73
Culverts							
60	LF of 18" \$1,080.00		0	LF of 24"	\$0.00		
0	LF of 30" \$0.00		0	LF of 36"	\$0.00		
0	LF of 42" \$0.00		0	LF of 48"	\$0.00		
0	LF of 54" \$0.00 \$1,080.00		0	LF of 60"	\$0.00		
Culvert Marker	s						
2 m	arkers \$20.00				TOTA	L CULVERT COSTS =	\$1,100.00
			DI				
			Pi	KOJEC I	NO. 1 I	OTAL COST = _	\$6,963.73
PROJECT NO. 3:		**					
Grass seed and fertilize are	eas of disturbed soil.	1.00 a	cres @	\$200.00	per acre =	\$200.00	
			PF	ROJECT	NO. 3 T	OTAL COST = _	\$200.00
					TO	TAL COST =	\$7,163.7
							77,100.1

Timber Sale:	Timber Sale: Big 3 Junction Road Segment: J to K			Timbe	r Sale No. :	341-1	0-023
Road Segment:			Construction:		9+00 stations 0.17 miles		
PROJECT NO. 1							
EXCAVATION							
Clearing and Grubbing (Scatter)		0.83	acres @	\$1,401.00	per acre =	\$1,157.85	
Balanced Road Construction		4.60	sta @	\$90.00	per sta =	\$414.00	
Drift		4.40	sta @	\$150.00	per sta =	\$660.00	
Construct Turnaround		1	ea @	\$75.00	per ea ≔	\$75.00	
Landing		1	ea @	\$285.00	per ea =	\$285.00	
Grade, Ditch, and Roll		9.00	sta @	\$28.70	per sta =	\$258.30	
CULVERTS - MATERIAL	S & INSTALLATI	ON			TOTAL E	XCAVATION COSTS=	\$2,850.15
Culverts							
30 LF c	f 18" \$540.00		0	LF of 24"	\$0.00		
0 LF c	f 30" \$0.00		0	LF of 36"	\$0.00		
0 LF o	f 42" \$0.00		0	LF of 48"	\$0.00		
0 LF c	f 54" \$0.00 \$540.00		0	LF of 60"	\$0.00		
Culvert Markers							
1 markers	\$10.00						
					TOTA	L CULVERT COSTS =	\$550.00
			PF	ROJECT	NO. 1 T	OTAL COST = .	\$3,400.15
PROJECT NO. 3:							
Grass seed and fertilize areas of	disturbed soil.	0.41 €	icres @	\$200.00	per acre =	\$82.64	
			PF	ROJECT	NO. 3 T	OTAL COST =	\$82.64
					TO	TAL COST =	\$3,482.8

0.96			r Sale No. :	341-10 10+50 stations 0.20 miles	
0.96				····	
0.06					
0.06					
0.50	acres @	\$1,401.00	per acre =	\$1,350.83	
10.50	sta @	\$90.00	per sta =	\$945.00	
1	ea@		•	\$60.00	
1	ea@	\$75.00	per ea =	\$75.00	
1	ea @	\$285.00	per ea =	\$285.00	
10.50	sta @	\$28.70	per sta =	\$301.35	
			TOTAL EX	XCAVATION COSTS≃	\$3,017.18
ON					
	0	LF of 24"	\$0.00		
	0	LF of 36"	\$0.00		
	0	LF of 48"	\$0.00		
	0	LF of 60"	\$0.00		
	PF	ROJECT	NO. 1 T	OTAL COST =	\$3,675.18
0.48 a	cres @	\$200.00	per acre =	\$96.42	
	PF	ROJECT	NO. 3 T	OTAL COST =	\$96.42
			TO	TAL COST =	\$3,771.60
	1 1 1 10.50	10.50 sta @ 1 ea @ 1 ea @ 1 ea @ 1 ea @ 10.50 sta @ ON O O O O O O O O O O O O O O O O O	10.50 sta @ \$90.00 1 ea @ \$60.00 1 ea @ \$75.00 1 ea @ \$285.00 10.50 sta @ \$28.70 ON 0 LF of 24" 0 LF of 36" 0 LF of 60" PROJECT 0.48 acres @ \$200.00	10.50 sta @ \$90.00 per sta = 1 ea @ \$60.00 per ea = 1 ea @ \$75.00 per ea = 1 ea @ \$285.00 per ea = 10.50 sta @ \$28.70 per sta = TOTAL EX ON 0 LF of 24" \$0.00 0 LF of 36" \$0.00 0 LF of 60" \$0.00 0 LF of 60" \$0.00 0 LF of 50" \$0.00 0 LF of 50" \$0.00	10.50

Move-In Calculations

Timber Sale: _ Sale Number: _ Big 3 Junction 341-10-023

LOWBOY	HAUL (Rour	nd Trip)
DIST. (mi)	ROADWAY	AVE SPEED (mph)
8.0	Main Lines	7
	Steep	
2.0	Grades	2

			***		Within Area	1			Within	
	EQUIPMENT	Base	Woods	Pilot	Move	Begin	End	Total	Area	Total
No.		Cost	Cost	Cars	(\$/mile)	Mileage	Mileage	Miles	Cost	Cost
1	Drill & Compressor	\$276.00	\$295.72		\$46.00	0.0	0.0	0.0	0.0	\$571.72
0	Brush Cutter	\$0.00	\$0.00		\$4.00	0.0	0.0	0.0	0.0	\$0.00
1	Graders	\$300.00	\$321 .4 3		\$3.65	0.0	1.0	1.0	3.7	\$625.08
0	Loader (Small)	\$0.00	\$0.00	1	\$3.55	0.0	0.0	0.0	0.0	\$0.00
0	Loader (Med. & Large)	\$0.00	\$0.00	1	\$9.00	0.0	0.0	0.0	0.0	\$0.00
2	Rollers (smooth/grid) & Compactors	\$576 . 92	\$540.50		\$5.00	0.0	1.0	1.0	10.0	\$1,127.42
0	Excavators (Small)	\$0.00	\$0.00	•	\$22.00	0.0	0.0	0.0	0.0	\$0.00
0	Excavators (Med.)	\$0.00	\$0.00		\$35.50	0.0	0.0	0.0	0.0	\$0.00
1	Excavators (Large)	\$466 . 14	\$467.23	1	\$ 44 .80	0.0	1.0	1.0	44.8	\$978.17
0	Tired Backhoes/Skidders	\$0.00	\$0.00		\$3.00	0.0	0.0	0.0	0.0	\$0.00
0	Tractors (D6)	\$0.00	\$0.00	. 2	\$7.10	0.0	0.0	0.0	0.0	\$0.00
0	Tractors (D7)	\$0.00	\$0.00	2	\$11.30	0.0	0.0	0.0	0.0	\$0.00
1	Tractor (D8)	\$473.80	\$427.80	2	\$15.10	0.0	1.0	1.0	15.1	\$916.70
3	Dump Truck (10 cy +)	\$350.00	\$300.00		\$2.85	0.0	1.0	1.0	8.6	\$658.55
0	Dump Truck (Off Hiway)	\$0.00	\$0.00	1	\$4.75	0.0	0.0	0.0	0.0	\$0.00
0	Water Truck (1500 Gal)	\$0.00	\$0.00		\$2.85	0.0	0.0	0.0	0.0	\$0.00
0	Water Truck (2500 Gal)	\$0.00	\$0.00		\$2.85	0.0	0.0	0.0	0.0	\$0.00
						TOTAL MO	OVE-IN C	OSTS:		\$4,877.64

Move-In Calculations

Timber Sale: Big 3 Junction
Sale Number: 341-10-023

LOWBOY HAUL (Round Trip)									
DIST. (mi)	ROADWAY	AVE SPEED (mph)							
6.5	Main Lines	7							
	Steep								
0.0	Grades	2							

					Within Area	1			Within	
	EQUIPMENT	Base	Woods	Pilot	Move	Begin	End	Total	Area	Total
No.	DESCRIPTION	Cost	Cost	Cars	(\$/mile)	Mileage	Mileage	Miles	Cost	Cost
0	Drill & Compressor	\$0.00	\$0.00		\$46.00	0.0	0.0	0.0	0.0	\$0.00
0	Brush Cutter	\$0.00	\$0.00		\$4.00	0.0	0.0	0.0	0.0	\$0.00
1	Graders	\$0.00	\$167.15		\$3.65	0.0	0.0	0.0	0.0	\$167.15
0	Loader (Small)	\$0.00	\$0.00	1	\$3.55	0.0	0.0	0.0	0.0	\$0.00
0	Loader (Med. & Large)	\$0.00	\$0.00	1	\$9.00	0.0	0.0	0.0	0.0	\$0.00
2	Rollers (smooth/grid) & Compactors	\$40.25	\$379.50		\$5.00	0.0	0.0	0.0	0.0	\$419.75
0	Excavators (Small)	\$0.00	\$0.00		\$22.00	0.0	0.0	0.0	0.0	\$0.00
0	Excavators (Med.)	\$0.00	\$0.00		\$35.50	0.0	0.0	0.0	0.0	\$0.00
1	Excavators (Large)	\$82.80	\$275.02	1	\$44.80	0.0	0.0	0.0	0.0	\$357.82
0	Tired Backhoes/Skidders	\$0.00	\$0.00		\$3.00	0.0	0.0	0.0	0.0	\$0.00
0	Tractors (D6)	\$0.00	\$0.00	2	\$7.10	0.0	0.0	0.0	0.0	\$0.00
0	Tractors (D7)	\$0.00	\$0.00	2	\$11.30	0.0	0.0	0.0	0.0	\$0.00
1	Tractor (D8)	\$82.80	\$257.93	2	\$15.10	0.0	0.0	0.0	0.0	\$340. 7 3
1	Dump Truck (10 cy +)	\$0.00	\$65.00		\$2.85	0.0	0.0	0.0	0.0	\$65.00
0	Dump Truck (Off Hiway)	\$0.00	\$0.00	1	\$4.75	0.0	0.0	0.0	0.0	\$0.00
0	Water Truck (1500 Gal)	\$0.00	\$0.00		\$2.85	0.0	0.0	0.0	0.0	\$0.00
0	Water Truck (2500 Gal)	\$0.00	\$0.00		\$2.85	0.0	0.0	0.0	0.0	\$0.00
						TOTAL M	OVE-IN C	OSTS:		\$1,350.45

ROCK DEVELOPMENT COST SUMMARY

Timber Sale: _	Big 3 Junction
Sale Number:	341-10-023
Pit Name:	Big Rock

Swell: Shrinkage: Drill Pct.:	1.30 1.16 100%		Pit Run (trk me Total Truck Yal Total In Place \	rdage: _	3,410 cy 3,410 cy 2,623 cy
Pit Development					\$7,324.19
Drill & Shoot (Down Jaw Run Load Jaw: Load Dump Truck:	holes): - - - -	\$3.00 /cy x \$1.90 /cy x \$0.70 /cy x \$0.70 /cy x	2,623 cy 3,410 cy 3,410 cy 3,410 cy	= = = = Subtotal	\$7,869.23 \$6,479.00 \$2,387.00 \$2,387.00 \$26,446.42
Move in Loaders Set Up Jaw Clean Up Pit				Subtotal -	\$815.09 \$880.00 \$300.00 \$1,995.09
PIT DEVEL	OPMENT COST	\$8.34/cy	TOTAL PRODUCTION	ON COST	\$28,441.51

TC PSTATS	SAMPLE TREES SAMPLE TREES SAMPLE TREES SAMPLE TREES SAMPLE TREES TREES										
TWP RO	ЭE	SC TRA	CT	TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
				0100 112	_	1	215.00	44	253	S	W
				710	2						
U4IN 071	ν	29 1		0400					DED CENTRA		
					TREES	J					
		PLOTS	TREES								
TOTAL		44	253		5.8						
CRUISE		43	253		5.9		36,992		.7		
DBH COU	JNT									•	
	Т										
ł		1									
i		1									
				STA	ND SUMN	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
				DBH	LEN	DEN	AREA				
DF		126	72.7	16.6	67	27	108.8	15,218	14,978	3,805	3,804
										-	•
	Y"?					6				-	•
	E										
	3										
TOTAL		253	172.1	15.5	57			28,407		7,320	
	68.	1 TIMES	OUT OF 100					MPLE ERR	OR		
L										-	
	0			I		***			5	10	15
1											
1	Е				65	83	100				
		3.3	2 3.0		427	440	453				
1	1	118.8	3 75		200	314	337		563	141	63
-	1		8 11								
				т							
	0						•		<u> </u>	10	1.3
R ALDER		63.3					35				
·	Е										
î .	₹	30	20.0		138	193	248				
		102.6	6.4		73	79	84		421	105	47
CL 68.	1	COE	FF		TREES/	ACRE			# OF PLOTS	REQ.	INF. POP.
				L	OW	AVG	HIGH				
	E										
	3										
TOTAL		69.3	10.4		154	172	190		192	48	21
CL 68.	1	COE	FF		BASAL	AREA/A	CRE		# OF PLOTS	REQ.	INF. POP.
	0		-	<u>L</u>					5	10	
R ALDER WH		157.6 238.7			53 21	70 32	86 44				
** 11		230.7	30.0		<i>ن</i> ا	ے د	44				

ų.

TC PS	TATS]	PROJECT PROJECT		ISTICS 33 JC2			PAGE DATE	2 2/23/2010
TWP	RGE	SC	TRACT	TYPI	E	A	CRES	PLOTS	TREES	CuFt	BdFt
04N 04N 04N	07 07W 07W	28 28 29	1 1	0100 0300 0400			215.00	44	253	S	W
CL	68.1		COEFF		BASA	L AREA/A	ACRE		# OF PLO	TS REQ.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
BL M	IAPLE		259.8	39.1	7	12	16				
RC			474.8	71.5	0	2	3				
S SPI	RUCE		663.3	99.9	0	1	2				
TOT	AL		46.4	7.0	209	225	241		86	21	10
CL	68.1		COEFF		NET E	F/ACRE		•	# OF PLOTS	REO.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF			110.7	16.7	12,480	14,978	17,477				
R AL	DER		155.6	23.4	4,709	6,150	7,592				
WH			249.8	37.6	3,523	5,649	7,774				
BL M	IAPLE		259.4	39.1	288	473	658				
RC			463.6	69.8	44	144	245				
S SPI	RUCE		663.3	99.9	0	201	402				
TOT	AL		54.2	8.2	25,341	27,596	29,851		118	29	13
CL	68.1		COEFF		NET C	UFT FT/A	ACRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF			110.5	16.6	3,170	3,804	4,437				
R AL	DER		157.9	23.8	1,391	1,825	2,259				
WH			252.8	38.1	835	1,348	1,861				
BL M	IAPLE		265.4	40.0	132	220	308				
RC			476.7	71.8	18	63	109				
S SPI	RUCE		663.3	99.9	0	44	89				
TOT	AL		51.0	7.7	6,743	7,304	7,865		104	26	12

AZ

TC PSTATS		Area '	2	PR(DJECT S ROJECT		JC2			PAGE DATE	1 2/25/2010
WP RGE	SC	TRACT		TYPE		ACF	RES	PLOTS	TREES	CuFt	BdFt
04N 07 04N 07W	28 29	1		0300 0400		1	03.00	23	131	S	W
		-				E	STIMATED		PERCENT		
					TREES		TOTAL		SAMPLE		
	Р	LOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		23	131		5.7						
CRUISE		22	131		6.0		19,502		.7		
DBH COUN	ľ										
REFOREST											
COUNT BLANKS		1									
100 %		1									
100 /6				CT A	ND CUMN	LADV					
	QΔ	MPLE	TREES	AVG	ND SUMN BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		REES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF		68	76.7	16.0	64	27	107.0	14,497		3,599	3,599
R ALDER		46	101.2	12.6	40	2.1	87.6	7,461		2,205	2,203
WH		15	10.3	18.8	82	4	20.0	3,751		815	809
BL MAPLE		1	.8	18.0	50	,	1.3	113		24	24
RC		1	.3	27.0	82		1.3	161	151	51	51
TOTAL		131	189.3	14.5	52		217.3	25,983	25,492	6,694	6,686
CL 68.1		COEFF			SAMPLE	TREES	- BF	ā	# OF TREES		INF. POP.
SD: 1.0		VAR.%	S.E.%	I.	.OW	AVG	HIGH		# OF TREES 5	REQ. 10	INF. POP.
SD: 1.0 DF		VAR.% 91.4	11.1	I.	OW 266	AVG 299	HIGH 332	· · · · · · · · · · · · · · · · · · ·			
SD: 1.0 DF R ALDER		VAR.% 91.4 62.6	11.1 9.2	<u>I</u>	OW 266 94	AVG 299 103	332 113	1			
$\begin{array}{cc} \text{SD:} & 1.0 \\ \text{DF} & \\ \text{R ALDER} \\ \text{WH} & \\ \text{BLMAPLE} \end{array}$		VAR.% 91.4	11.1	<u> </u>	OW 266	AVG 299	HIGH 332				INF. POP.
SD: 1.0 DF R ALDER WH		VAR.% 91.4 62.6	11.1 9.2	I	OW 266 94	AVG 299 103	332 113				1:
SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL		VAR.% 91.4 62.6 52.8 98.8	11.1 9.2 14.1	I	266 94 377 225	299 103 439 246	HIGH 332 113 501 268		5 390	10 97	1.
SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1		VAR.% 91.4 62.6 52.8 98.8 COEFF	11.1 9.2 14.1 8.6		266 94 377 225 SAMPLE	299 103 439 246 E TREES	HIGH 332 113 501 268 - CF		5 390 # OF TREES	97 REQ.	1. 4. INF. POP.
SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1		VAR.% 91.4 62.6 52.8 98.8	11.1 9.2 14.1		266 94 377 225 SAMPLE	299 103 439 246 E TREES	HIGH 332 113 501 268		5 390	10 97	1. 4. INF. POP.
SD: 1.0 DF R ALJER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF		91.4 62.6 52.8 98.8 COEFF VAR.%	11.1 9.2 14.1 8.6 S.E.%		266 94 377 225 SAMPLE	299 103 439 246 E TREES AVG	332 113 501 268 - CF HIGH		5 390 # OF TREES	97 REQ.	1 4. INF. POP.
SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5	11.1 9.2 14.1 8.6 S.E.% 9.3		266 94 377 225 SAMPLE OW 65	299 103 439 246 E TREES AVG	332 113 501 268 - CF HIGH		5 390 # OF TREES	97 REQ.	1 4. INF. POP.
DF		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4		266 94 377 225 SAMPLE OW 65 28	299 103 439 246 2 TREES AVG 72 31	HIGH 332 113 501 268 - CF HIGH 79 34		5 390 # OF TREES	97 REQ.	1 4. INF. POP.
SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1		266 94 377 225 SAMPLE OW 65 28 84	299 103 439 246 2 TREES AVG 72 31 97	HIGH 332 113 501 268 - CF HIGH 79 34 110		5 390 # OF TREES 5	97 REQ. 10	4, INF. POP.
SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL		91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4		266 94 377 225 SAMPLE OW 65 28 84	299 103 439 246 2 TREES AVG 72 31 97	HIGH 332 113 501 268 - CF HIGH 79 34	;	390 # OF TREES 5	97 REO. 10	4. INF. POP. 1:
SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1	1	266 94 377 225 SAMPLE OW 65 28 84 56	299 103 439 246 2 TREES AVG 72 31 97 61	HIGH 332 113 501 268 - CF HIGH 79 34 110	;	390 # OF TREES 5 274 # OF PLOTS	97 REQ. 10 68 REQ.	4. INF. POP. 1
SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 4.0		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.%	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2	1	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A	299 103 439 246 E TREES AVG 72 31 97 61 ACRE AVG	HIGH 332 113 501 268 - CF HIGH 79 34 110 655	;	390 # OF TREES 5	97 REO. 10	4. INF. POP. 1
DE 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1	1	266 94 377 225 SAMPLE OW 65 28 84 56	299 103 439 246 2 TREES AVG 72 31 97 61 ACRE AVG 77	HIGH 332 113 501 268 - CF HIGH 79 34 110 655 HIGH 99	;	390 # OF TREES 5 274 # OF PLOTS	97 REQ. 10 68 REQ.	4. INF. POP. 1
DE 1.0 DF R AL DER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R AL DER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R AL DER		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6	1	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A	299 103 439 246 E TREES AVG 72 31 97 61 ACRE AVG	HIGH 332 113 501 268 - CF HIGH 79 34 110 655	;	390 # OF TREES 5 274 # OF PLOTS	97 REQ. 10 68 REQ.	4. INF. POP. 1
SD: 1.0 DF R AL→ER RC TOT→L CL 68.1 SD: 1.0 DF R AL→ER WH BL M→PLE RC TOT→L CL 68.1		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6	1	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A	299 103 439 246 2 TREES AVG 72 31 97 61 ACRE AVG 77 101	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135	;	390 # OF TREES 5 274 # OF PLOTS	97 REQ. 10 68 REQ.	4, INF. POP. 1:
DE 1.0 DF R AL→ER CL 68.1 SD: 1.0 DF R AL→ER WH BL M→PLE RC TOT→L CL 68.1 SD: 1.0 DF R AL→ER WH BL M→PLE RC TOT→L CL 68.1 SD: 1.0 DF R AL→ER WH BL M→PLE RC TOT→L CL 68.1		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7 206.3	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6 44.0 102.2 102.2	1	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A	299 103 439 246 2 TREES AVG 72 31 97 61 ACRE AVG 77 101 10	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135 15	;	390 # OF TREES 5 274 # OF PLOTS 5	97 REQ. 10 68 REQ.	1: 43 INF. POP. 1:
SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC RC RC RALDER RC RC RALDER		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7 206.3 479.6	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6 44.0 102.2	1	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A	299 103 439 246 2 TREES AVG 72 31 97 61 CCRE AVG 77 101 10 1	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135 15 2	;	390 # OF TREES 5 274 # OF PLOTS	97 REQ. 10 68 REQ.	1: 43 INF. POP. 1: 30 INF. POP.
SD: 1.0 DF R AL→ER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R AL→ER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R AL→ER WH BL MAPLE RC TOTAL CL 68.1 SC: 1.0 CL 68.1 CL 68.1		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7 206.3 479.6 479.6 77.7 COEFF	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6 44.0 102.2 102.2 16.6	I	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A OW 54 67 6	299 103 439 246 CTREES AVG 72 31 97 61 ACRE AVG 77 101 10 1 0 189 AREA/AC	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135 15 2 1 221 CRE	7	390 # OF TREES 5 274 # OF PLOTS 5	97 REO. 10 68 REO. 10	1. 4. INF. POP. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
DE 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 CL 68.1 SD: 1.0 CL 68.1 SD: 1.0		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7 206.3 479.6 479.6 77.7 COEFF VAR.%	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6 44.0 102.2 102.2 16.6 S.E.%	I	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A OW 54 67 6	299 103 439 246 CTREES AVG 72 31 97 61 ACRE AVG 77 101 10 1 0 189 AREA/AC AVG	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135 15 2 1 221 CRE HIGH	7	390 # OF TREES 5 274 # OF PLOTS 5	97 REQ. 10 68 REO. 10	1. 4. INF. POP. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
DE 1.0 DF RALDER CL 68.1 SD: 1.0 DF RALDER WH BLMAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC TOTAL CL 68.1 SD: 1.0 DF R ALDER		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7 206.3 479.6 479.6 77.7 COEFF VAR.% 118.5	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6 44.0 102.2 102.2 16.6 S.E.% 25.2	I	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A OW 54 67 6	299 103 439 246 2 TREES AVG 72 31 97 61 ACRE AVG 77 101 10 1 0 189 AREA/AC AVG 107	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135 15 2 1 221 CRE HIGH 134	7	390 # OF TREES 5 274 # OF PLOTS 5	97 REO. 10 68 REO. 10	1. 4. INF. POP. 1. 30 INF. POP. 1.
DE		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7 206.3 479.6 479.6 77.7 COEFF VAR.% 118.5 154.3	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6 44.0 102.2 102.2 16.6 S.E.% 25.2 32.9	I	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A OW 54 67 6	299 103 439 246 2 TREES AVG 72 31 97 61 ACRE AVG 77 101 10 1 0 189 AREA/AC AVG 107 88	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135 15 2 1 221 CRE HIGH 134 116	7	390 # OF TREES 5 274 # OF PLOTS 5	97 REO. 10 68 REO. 10	30 INF. POP. 1:
DE		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7 206.3 479.6 479.6 77.7 COEFF VAR.% 118.5 154.3 204.7	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6 44.0 102.2 102.2 16.6 S.E.% 25.2 32.9 43.6	I	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A OW 54 67 6	299 103 439 246 2 TREES AVG 72 31 97 61 CRE AVG 77 101 10 1 0 189 AREA/AC AVG 107 88 20	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135 15 2 1 221 CRE HIGH 134 116 29	7	390 # OF TREES 5 274 # OF PLOTS 5	97 REO. 10 68 REO. 10	1. 4. INF. POP. 1. 30 INF. POP. 1.
DE: 1.0 DF		91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7 206.3 479.6 479.6 77.7 COEFF VAR.% 118.5 154.3 204.7 479.6	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6 44.0 102.2 102.2 16.6 S.E.% 25.2 32.9 43.6 102.2	I	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A OW 54 67 6	299 103 439 246 2 TREES AVG 72 31 97 61 CRE AVG 77 101 10 1 0 189 AREA/AC AVG 107 88 20 1	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135 15 2 1 221 CRE HIGH 134 116 29 3	7	390 # OF TREES 5 274 # OF PLOTS 5	97 REO. 10 68 REO. 10	1. 4. INF. POP. 1. 30 INF. POP. 1.
DE		VAR.% 91.4 62.6 52.8 98.8 COEFF VAR.% 76.5 64.0 49.0 82.8 COEFF VAR.% 139.0 157.7 206.3 479.6 479.6 77.7 COEFF VAR.% 118.5 154.3 204.7	11.1 9.2 14.1 8.6 S.E.% 9.3 9.4 13.1 7.2 S.E.% 29.6 33.6 44.0 102.2 102.2 16.6 S.E.% 25.2 32.9 43.6	I	266 94 377 225 SAMPLE OW 65 28 84 56 TREES/A OW 54 67 6	299 103 439 246 2 TREES AVG 72 31 97 61 CRE AVG 77 101 10 1 0 189 AREA/AC AVG 107 88 20	HIGH 332 113 501 268 - CF HIGH 79 34 110 65 HIGH 99 135 15 2 1 221 CRE HIGH 134 116 29	7	390 # OF TREES 5 274 # OF PLOTS 5	97 REO. 10 68 REO. 10	1. 4. INF. POP. 1. 30 INF. POP. 1.

TC PSTATS

PROJECT STATISTICS

PAGE

2

PROJECT IG3 JC2 DATE 2/25/2010 **TWP** RGE SC TRACT TYPE **ACRES PLOTS** TREES CuFt BdFt 103.00 S 04N 28 0300 23 131 W 07W 04N 29 0400 68.1 COEFF CL**NET BF/ACRE** # OF PLOTS REQ. INF. POP. SD: VAR.% S.E.% LOW AVG HIGH 1.0 5 10 15 DF 116.6 24.8 10,750 14,304 17,859 R ALDER 147.7 31.5 5,007 7,307 9,607 229.1 ŴН 48.8 1,851 3,617 5,382 BL MAPLE 479.6 102.2 113 229 RC 479.6 102.2 151 305 TOTAL 54.9 11.7 22,510 25,492 28,475 126 31 14 COEFF CL 68.1 **NET CUFT FT/ACRE** # OF PLOTS REQ. INF. POP. SD: VAR.% S.E.% 1.0 LOW AVG HIGH 10 15 DF 116.6 24.8 2,705 3,599 4,493 R ALDER 153.4 32.7 1,483 2,203 2,922 WH 222.2 47.3 426 809 1,191 BL MAPLE 479.6 102.2 24 49 RC 479.6 102.2 103 51 TOTAL 53.4 11.4 5,926 6,686 7,445 119 30 13

TC	PSPCSTGR		S	pecies,	Sort G	rade - Boar	d Fo	ot V	olum	es (P	'rojec	t)						
TO	4N R07W S2 4N R07W S2 4N R07W S2	8 Ty030	0	12.00 48.00 55.00		Project: Acres		G3_J 215.0								Page Date Time	2/23/20 8:21:2	10
<u> </u>		%	<u> </u>		1		Per	cent of	Net R	oard F	oot Volt	ıme				Average	a Log	Logs
	S So Gr	Net	Bd. F	t. per Acre	e	Total			ale Dia		001 7011	Log L	ength		Ln	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5		12-16		12-20	21-30			Ft	Ft	Lf	/Acre
DF	DO2S	34	2.3	5,294	5,174	1,112		•	48	52	. 3	1	32	64	35	350	2.21	14.8
DF	DO3S	48	1.6	7,277	7,157	1,539		71	28	2	1	1	16	83	37	127	0.93	56.3
DF	DO4S	17		2,535	2,535	545		100			11	29	11	48	28	39	0.40	65.8
DF	PUUT	1		112	112	24			100		100				11	70	1.12	1.6
DF	Totals	54	1.6	15,218	14,978	3,220		51	31	19	4	6	21	70	32	108	0.86	138.4
WH	DO2S	50	9.3	2 172	2.076	(19			41	50		1.1	~	0.4	3.5	400		
WH	DO28	37	9.3 3.3	3,173 2,152	2,876 2,080	618 447		74	41 18	59 8	0	11 2	5 13	84 84	36 37	403 138	2.62	7.1 15.1
WH	DO3S DO4S	9	3.5	490	490	105		94	6	0	8	32	11	49	27	40	0.93 0.41	12.4
WH	PU UT	4	7.5	218	202	43		4	ū	96	4		• •	96	28	243	1.58	.8
WH	Totals	20	6.4	6,033	5,649	1,214		36	28	36	1	9	8	82	33	160	1.16	35.4

RA	DOR	97	1.3	6,071	5,993	1,289		91	9		9	14	21	57	29	59	0.61	100.7
RA	PUUT	3	7.0	169	157	34		100			49	16		35	21	32	0.44	4.9
RA	Totals	22	1.4	6,240	6,150	1,322		91	9		10	14	20	. 56	29	58	0.61	105.7
вм	DOUT	21	6.4	111	104	22		100			35	23	8	34	22	30	0.79	3.5
BM	DOR	67	9.1	347	315	68		75	25			5	67	28	34	78	1.09	4.0
BM	PU UT	12		54	54	12			100			100			24	150	1.34	.4
вм	Totals	2	7.6	512	473	102		72	28		8	20	46	26	28	60	0.99	7.9
RC	DO3S	82	32.8	177	119	26		11	50	39				100	39	244	2.91	.5
RC	DO4S	18		25	25	5		100						100	40	150	1.26	.2
RC	Totals	ŀ	28.8	202	144	31		26	41	32				100	39	220	2.48	.7
SS	DO2S	78		158	158	34				100				100	40	1460	7.42	.1
SS	DO3S	19		39	39	8			100	100				100	40	360	7.42 2.46	.1 .1
SS	DO4S	3		4	4	1		100			100				18	40	0.83	.1
SS	Totals	l		201	201	43		2	19	78	2			98	33	620	4.18	.3
_	- · - · · · · · · · · · · · · · · · · ·			1									•					
Tota	IS		2.9	28,407	27,596	5,933	L	56	25	18	5	8	18	69	31	96	0.83	288.4

TC	PSPCSTGR		S	pecies,	Sort G	rade - Boar	d Foot V	olum	es (P	roject	:)		· · ·				
T0	4N R07W S2	8 Ty010	00 1	12.00		Project: Acres	BIG3_J 112.]	Page Date Time	3/2/201 10:00:	10
	S So Gr	% Net	DA E	t. per Acre	3	Total	Percent of			oot Volu					Average		Logs
Spp	T rt ad	BdFt	Def%	Gross		Net MBF	Log Sc 4-5 6-11	12-16		12-20	Log I 21-30		36-99	Ln Ft	Bd Ft	CF/ Lf	Per /Acre
DF DF DF	DO2S DO3S DO4S	35 47 18	2.4 2.0	5,743 7,475 2,663	5,608 7,327 2,663	628 821 298	61 100	40 35	60 3	2	34	42 21 10	56 79 50	35 37 29	391 132 41	2.52 0.96 0.41	14.3 55.6 64.6
DF	Totals	53	1.8	15,881	15,598	1,747	46	31	23	2	6	27	66	33	116	0.90	134.5
WH WH WH	DO2S DO3S DO4S Totals	53 37 10 25	10.8 4.4 7.6	4,519 2,909 704 8,132	4,033 2,781 704 7,517	452 311 79	63 92 32	31 26 8	69 11 41	1 0	12 2 39	7 19 4	81 78 57	35 36 28	439 140 43	3.06 0.96 0.42 1.24	9.2 19.8 16.5
RA	DOR	100	.6	5,118	5,087	570	94	6		9	15	16	60	29	60	0.60	84.2
RA	Totals	17	.6	5,118	5,087	570	94	6		9	15	16	60	29	60	0.60	84.2
BM BM	DOUT DOR	24 76 ·	6.4 9.1	213 665	200 604	22 68	100 75	25		35	23 5	8 67	34 28	22 34	30 78	0.79 1.09	6.7 7.7
ВМ	Totals	3	8.5	879	804	90	81	19		9	10	52	30	28	56	0.98	14.4
RC RC	DO3S DO4S	65 35	53.3	192 48	90 48	10 5	100		100				100 100	40 40	280 150	4.60 1.26	.3 .3
RC	Totals	0	42.7	241	138	15	35		65				100	40	215	2.93	.6
SS SS SS	DO2S DO3S DO4S	78 19 3		303 75 8	303 75 8	34 8 1	100	100	100	100			100 100	40 40 18	1460 360 40	7.42 2.46 0.83	.2 .2 .2
SS	Totals	1		386	386	43	2	19	78	2			98	33	620	4.18	.6
Tota	ls		3.6	30,637	29,531	3,307	51	25	24	3	9	21	67	32	106	0.89	279.8

TC	PSPCSTGR		S	pecies,	Sort G	rade - Boar	d Foot V	olum	es (P	rojec	t)						
	4N R07W S2 4N R07W S2			48.00 55.00		Project: Acres	BIG3_ 103							J	Page Date Fime	3/2/20: 9:59:4	10
	_	%					Percent of			oot Volt					Averag	e Log	Logs
Spp	S So Gr Trt ad	Net BdFt	Bd. F Def%	t. per Acre Gross	e Net	Total Net MBF		<u>cale Dia</u> 12-10		12-20	Log L 21-30		36-99	Ln Ft	Bd Ft	CF/ Lf	Per /Acre
RA RA	DOR PU UT	95 5	1.8 7.0	7,109 352	6,979 328	719 34	89 100			9 49	13 16	25	54 35	28 21	59 32	0.62 0.44	118.8
RA	Totals	29	2.1	7,461	7,307	753	89	11		10	13	24	53	28	57	0.61	129.1
DF DF DF DF	DO2S DO3S DO4S PU UT	32 49 17 2	2.2	4,806 7,061 2,396 234	4,702 6,972 2,396 234	484 718 247 24	81 100		41	3 1 18 100	3 2 23	19 10 12	75 87 47	35 37 26	309 122 36 70	1.89 0.89 0.39 1.12	15.2 57.0 67.1 3.3
	Totals	56	1.3	14,497		1,473	56		14	6	6	13	75	31	100	0.82	142.7
WH WH WH WH	DO2S DO3S DO4S PU UT	44 37 7 12	5.3 .7 7.5	1,709 1,329 258 455	1,618 1,319 258 421	167 136 27 43	100 100 4		32 96	32 4	8 1 11	31	92 99 25 96	37 39 24 28	330 133 33 243	1.79 0.86 0.39 1.58	4.9 9.9 7.9 1.7
WH	Totals	14	3.6	3,751	3,617	373	44	31	25	3	5	2	90	33	148	1.00	24.5
ВМ	PU UT	100		113	113	12		100			100			24	150	1.34	.8
BM	Totals	0		113	113	12		100			100			24	150	1.34	.8
RC	DO3S	100	6.2	161	151	16	18	82					100	38	225	1.99	.7
RC	Totals	1	6.2	161	151	16	18	82					100	38	225	1.99	.7
Tota	ls		1.9	25,983	25,492	2,626	64	25	11	7	8	14	71	30	86	0.75	297.7

Log Stock Table - Percent Board Feet TC PLOGSTBF BIG3 JC2 Acres Project: 215.00 Page 1 T04N R07W S28 Ty0100 112.00 CuFt: S BdFt: W Date 2/25/2010 T04N R07W S28 Ty0300 48.00 Time 4:35:18PM T04N R07W S29 Ty0400 55.00 S So Log Gross Def % Net Percent Net Volume by Scaling Diameter in Inches T rt Grd Len $\widetilde{\mathbf{MBF}}$ % MBF Spc 2-3 Spp 4-5 6-7 8-9 10-11 12-13 14-15 16-19 20-23 24-29 30-39 40+ DO 2S DF 16 29 1.9 29 .9 21.8 29.7 48.4 DF DO 2S 28 13 13 .4 100.0 DF 32 4.1 358 DO2S 373 11.1 5.2 27.2 49.0 11.8 6.8 2.3 188 DF 36 192 24.0 DO 2S 5.8 45.1 21.0 9.9 DF 40 530 1.0 525 16.3 10.6 DO 2S 14.0 48.8 21.1 5.5 .3 100.0 DF DO 3S 17 10 10 DF DO 3S 10 10 .3 100.0 27 100.0 DF DO 3S 29 2 2 .1 DF DO 3S 32 237 237 7.3 2.6 28.7 27.5 36.0 5.2 2 2 DF DO 3S 33 .1 100.0 DF DO 3S 35 5 5 .2 100.0 DF DO 3S 36 346 343 10.7 21.0 29.8 29.9 15.0 4.3 DF DO 3S 38 3 100.0 3 .1 DF DO 3S 39 3 3 .1 100.0 DF DO 3S 40 946 2.4 923 28.7 2.8 19.9 47.0 21.4 2.7 3.1 3.1 100.0 3 .1 DF DO 4S 12 3 6 100.0 DF DO 4S 13 6 .2 DF 2 2 100.0 DO 4S 14 .1 .3 100.0 DF DO 4S 15 11 11 DO 4S 8 8 .3 100.0 DF 16 DF 17 4 100.0 DO 4S .1 .2 100.0 DF DO 4S 18 6 10 DF 19 10 .3 100.0 DO 4S 20 11 100.0 DF DO 4S 11 .4 7 DF DO: 4S 21 7 .2 100.0 22 20 20 100.0 DF DO 4S .6 23 .7 100.0 DF DO 4S 23 23 12 DF DO 4S 24 12 .4 100.0 13 DF 25 13 .4 100.0 DO 4S 19 19 100.0 DF DO 4S 26 .6 DF DO 4S 27 26 26 .8 100.0 2 100.0 DF DO 4S 28 2 .1 100.0 DF 29 26 .8 DO 4S 26 DF 30 11 .4 100.0 DO 4S 11

DF

DF

DF

DO 4S

DO 4S

DO 4S

32

33

34

10

4

26

10

26

.3

.1

100.0

100.0

100.0

TC PLO	OGSTBF				Log	Stock	Tab	le - Per	cent B	oard	Feet						
					Proje	ect:	BIG	JC2	Acı	res	:	215.00	0				
T04N F	R07W S28 Ty(R07W S28 Ty(R07W S29 Ty(030	0 48.	.00		CuFt:	S		BdFt	: W					Page Date Time		2 5/2010 35:18PM
S T	20			Def	Net MBF	%		4 =	1		Volume l						
Spp T			MBF	%		Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23 2	24-29	30-39 40+
DF DF		35	21		21	.7			100.0								
DF		36 37	3 74		3 74	2.3			100.0								
DF		38	43		43	1.3			100.0								
DF	İ	39	12		12	.4			100.0								
DF		40	132		132	4.1			100.0								
							_		100.0						·		
DF		12	5		5	.2							100.0				
DF	PU UT	16	19		19	.6						54.6	45.4				
DF	Totals	\exists	3,272	1.6	3,220	54.3		_	20.5	11.5	18.7	15.1	10.3	15.7	6.6	1.7	
WH	DO 2S	21	20		20	1.6						·			100.0		
WH	DO 2S	24	16	17.4	13	1.1									100.0		
WH	DO 2S 2	25	23	4.2	22	1.8										100.0	
WH	DO 2S 2	26	13		13	1.0									100.0		
WH	DO 28	32	43	28.2	31	2.6							23.1	30.6	46.3		
WH	DO 28 3	36	94	5.1	89	7.3							12.4	59.3	28.3		
WH	DO 2S 4	40	474	9.1	431	35.5						6.6	13.6	29.6	31.9	18.4	
WH	DO 3S 2	20	2	·	2	.2	İ				100.0						
WH	DO 3S 2	24	5		5	.4							100.0				
WH	DO 3S 2	26	2		2	.2					100.0						
WH	DO 38 2	29	2		2	.1			100.0								
WH	DO 3S 3	32	70	20.1	56	4.6				5.8	58.7	11.6	23.8				
WH	DO 3S 3	34	3		3	.2				100.0							
WH	DO 3S	36	46		46	3.8			41.8	31.8	26.3						
WH	DO 3S	38	4		4	.3				100.0							
WH	DO 3S 4	40	329		327	26.9			2.8	13.9	55.9		16.7	10.8			
WH	DO 4S 1	14	1		1	.1			100.0						***		
WH		15	2		2	.2			100.0								
WH		17	3		3	.3			100.0					i			
WH	ŀ	19	1		1	.1			100.0								
WH		20	1		1	.1			100.0								
WH		22	8		8	.6			18.3				81.7				
WH	F	23	2		2	.2				100.0							
WH		25	3		3	.3			100.0								
WH		27	9		9	.7			37.5	62.5							
WH	DO 4S 2	28	7		7	.6			100.0								
WH	DO 4S 2	29	2		2	.2			100.0								
		\perp															

TC PLOGSTBF		Log Stoc	k Table - Per	cent Board F	'eet		·
		Project:	BIG3_JC2	Acres	215.00		
T04N R07W S28 Ty0100 T04N R07W S28 Ty0300 T04N R07W S29 Ty0400	112.00 48.00 55.00	CuF	t: S	BdFt: W		Page Date Time	3 2/25/2010 4:35:18PM

	So			Gross	Def	Net	%	ļ		Perc	ent Net	Volume	by Scal	ing Diam	eter in	nches			
Spp T	rt G	rd	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	12-13	14-15	16-19	20-23 24	4-29	30-39	40+
WH	DO	4S	30	3		3	.2			100.0									
WH	DO	4 S	31	. 2		2	.1			100.0				•					
WH	DO	4S	32	3		3	.3			100.0	:								
WH	DO	4S	33	7		7	.5			100.0									
WH	DO	4S	38	7		7	.6			100.0									
WH	DO	4S	39	16	_	16	1.3			100.0									
WH	DO	4 S	40	28		28	2.3			82.9	17.1								
WH	PU	UT	16	2		2	.1			100.0									
WH	PU	UT	40	45	7.8	42	3.4								100.0				
WH	To	otals		1,297	6.4	1,214	20.5			9.8	6.8	19.1	2.9	12.9	21.9	18.3	8.3		
RA	DO	R	12	7		7	.5			100.0									
RA	DO	R	14	14		14	1.1			100.0									
RA	DO	R	15	19		19	1.4			100.0									
RA	DO	R	16	3		3	.2			100.0									
RA	DO	R	17	10		10	.8			100.0								!	
RA	DO	R	18	7		7	.5			100.0									
RA	DO	R	19	24		24	1.8			100.0									
RA	DO	R	20	27		27	2.1			54.5				45.5					
RA	DO	R	21	15	8.9	13	1.0			100.0									
RA	DO	R	22	4		4	.3			100.0									
RA	DO	R	23	17		17	1.3			100.0									
RA	DO	R	24	18		18	1.3			44.7		55.3							
RA	DO	R	25	27		27	2.1			100.0									
RA	DO	R	26	18		18	1.4			100.0									
RA	DO	R	27	7		7	.5			100.0								:	
RA	DO	R	28	27		27	2.0			100.0									
RA	DO	R	29	34		34	2.5			100.0									
RA	DO	R	30	16	5.6	15	1.1			29.4		70.6							
RA	DO	R	31	31		31	2.3			84.2	15.8								
RA	DO	R	32	230	3.8	221	16.7			7.4	61.7	25.7	5.3						
RA	DO .	R	35	17		17	1.3			100.0	į								
RA	DO .	R.	36	322		320	24.2			19.0	45.0	30.4	5.6						
RA	DO	R	38	28		28	2.1			68.9		31.1							
RA	DO	R	40	384	1.0	380	28.7			39.9	20.4	20.3	13.2	6.2					
RA	PU	UT	12	5		5	.4				100.0								
RA	PU	UT	19	6		6	.5			100.0									

TC PLO	OGSTBF				Log	Stock	Tabl	le - Per	cent B	loard	Feet	•						
					Proje	ect:	BIG3	JC2	Ac	res		215.00)					
T04N 1	R07W S28 R07W S28 R07W S29	Ty030	00 48	2,00 3.00 5.00		CuFt:	S		BdFt	: W					Page Date Time	2/2	4 25/201 35:18	_
s	So	Log	Gross	Def	Net	%			. Perc	ent Net	Volume	by Scal	ing Diar	neter in	Inches	•		
Ѕрр Т	rt Grd	Len	MBF	%	MBF	Spc	2-3	4-5	6-7	8-9	10-11	•		16-19		24-29	30-39	40+
RA	PU U	Т 20	8	33.3	5	.4			100.0									
RA	PU U	Γ 22	2		2	.2			100.0									
RA	PU U	Г 23	3		3	.2			100.0	:								
RA	PU U	Г 36	12		12	.9				100.0								
RA	Tota	ls	1,342	1.4	1,322	22.3			42.8	28.8	19.7	6.0	2.7					
BM	DO U	r 16	8		8	7.7			100.0									

100.0

100.0

100.0

100.0

49.9

44.6

54.1 45.9

8.3

8.9

100.0

23.4 14.2

2.2

100.0

36.5

50.1

18.9

100.0

17.4

18.9 10.3

100.0

11.5

63.5

16.7

100.0

19.4

9.2 13.4

100.0

73.7

100.0

78.5

3.2

7.4

5.1

1.7

7.5

3.5

26.3

18.1

18.7

11.5

1.7

8.9

73.7

.5

78.5

2.2

.7

8

27

18

19

12

102

23

5 17.4

31

34

8 19.4

43

5,933 100.0

BM

BM

BM

BM

BM

BM

ВМ

BM

BM

ВМ

RC

RC

RC

RC

SS

SS

SS

SS

Total

DO UT 22

DO UT 36

32

22

30

32

35

40

36

40

40

40

40

18

DO UT

DO R

DO R

DO R

DO R

DO R

PU UT 24

Totals

DO 3S

DO 3S

DO 4S

DO 2S

DO 3S

DO 4S

Totals

All Species

Totals

5

2

4

29

20

20

12

110

3

35 35.4

5

34

8

1

43

2.9

6,108

44 28.8

9 16.7

2 100.0

8.6

6.1

3.5

7.6

TC PSTNDSUM		Stand Tabl	e Summary	Page Date:	1 2/25/2010
T04N R07W S28 Ty0100	112.00	Project	BIG3_JC2	Time:	4:35:17PM
T04N R07W S28 Ty0300 T04N R07W S29 Ty0400	48.00 55.00	Acres	215.00	Grown Year:	

10411	KU/W S	S29 Ty040	10	55.	00		Acres		215.0				Grown 162		
S Spc T	DBH	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	ge Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
DF	9	4	82	68	7.568	3.34	6.12	10.6	48.1	2.08	65	294	447	140	63
DF	11	4	84	83	4.945	3.26	7.42	12.1	50.0	2.87	90	371	617	193	
DF	12	8	83	84	9.962	7.82	15.93	14.7	52.5	7.49	234	837	1,611	503	180
DF	13	6	79	62	5.694	5.25	7.85	15.8	45.0	3.97	124	353	854	267	76
DF	14	7	83	92	6.391	6.83	13.38	16.7	63.2	7.15	223	845	1,537	480	182
DF	15	5	83	86	3.468	4.26	6.94	19.8	72.3	4.39	137	501	944	295	108
DF	16	14	85	100	8.409	11.74	17.73	24.1	99.0	13.70	428	1,756	2,946	921	378
ÐF	17	8	84	107	4.639	7.31	9.28	30.0	109.8	8.93	279	1,018	1,921	599	219
DF	18	5	84	76	2.299	4.06	5.08	22.9	92.9	3.72	116	471	800	250	101
DF	19	9	83	93	3.680	7.25	8.51	27.9	102.4	7.61	238	872	1,635	511	187
DF	20	7	84	94	2.933	6.40	6.36	35.3	127.6	7.17	224	812	1,543	482	174
DF	.21	9	83	105	3.419	8.22	8.75	35.8	142.4	10.03	313	1,246	2,156	674	268
DF	22	8	85	97	2.072	5.47	4.01	48.7	180.2	6.25	195	723	1,344	420	155
DF	23	7	83	105	1.918	5.53	4.97	42.8	178.2	6.81	213	885	1,464	458	190
DF	24	3	85	112	.835	2.62	2.51	42.9	168.3	3.46	107	422	744	231	91
DF	25	4	84	93	.854	2.91	1.71	55.2	227.3	3.02	94	388	649	203	83
DF	26	3	84	112	.829	3.06	2.20	58.5	240.9	4.11	128	529	884	276	114
DF	27	4	85	119	.821	3.26	2.21	65.9	293.0	4.66	146	648	1,003	313	139
DF	28	3	79	124	.696	2.98	2.09	61.2	257.8	4.09	128	538	879	275	116
DF	29	1	81	138	.216	.99	.65	76.1	363.3	1.58	49	236	340	106	51
DF	30	2	85	132	.332	1.63	1.00	80.8	380.8	2.58	81	380	554	173	82
DF	31	1	80	123	.189	.99	.38	96.7	380.0	1.17	37	144	252	79	31
DF	32	2	81	124	.292	1.63	.70	94.4	442.1	2.11	66	309	454	142	66
DF	36	1	78	127	.140	.99	.42	99.2	463.3	1.35	42	195	290	90	42
DF	37	1	79	128	.133	.99	.40	114.2	510.0	1.46	46	203	313	98	44
DF	Totals	126	83	90	72.737	108.82	136.58	27.8	109.7	121.77	3,804	14,978	26,181	8,178	3,220
RA	8	2	79	39	6.142	2.14	6.14	3.7	15.0	.62	23	92	134	49	20
RA	9	7	81	43	14.486	6.40	12.06	7.7	28.7	2.54	92	346	546	199	74
RA	10	4	82	90	6.923	3.78	6.92	11.5	41.7	2.22	79	-288	477	171	62
RA	11	5	81	74	6.690	4.42	6.69	16.1	57.1	2.96	108	382	636	231	82
ŔA	12	6	80	87	7.334	5.76	11.94	13.2	47.4	4.34	158	566	933	339	122
RA	13	8	83	86	7.637	7.04	12.34	16.9	59.1	5.72	208	730	1,230	447	157
RA	14	5	81	74	4.535	4.85	7.06	18.9	59.0	3.67	134	417	789	287	90
RA	15	11	81	79	8.802	10.80	16.73	18.8	62.0	8.64	314	1,038	1,858	676	
RA	16	9	81	74	6.486	9.06	11.49	21.9	74.7	6.91	251	858	1,486	541	185
RA	17	5	81	86	2.751	4.34	5.50	25.1	84.6	3.80	138	465	817	297	100
RA	18	4	82	84	1.913	3.34	3.83	28.7	94.6	3.02	110	362	649	236	78
RA	20	2	81	81	.983	2.14	1.97	36.3	107.5	1.96	71	211	422	153	45
RA	21	3	81	75	1.124	2.70	1.98	38.9	112.4	2.13	77	223	457	166	
RA	22	1	81	98	.376	.99	.75	50.5	175.0	1.04	38	132	225	82	28
RA	24	1	90	26	.316	.99									
RA	25	1	80	51	.291	.99	.29	80.4	140.0	.64	23	41	138	50	9
RA	Totals	74	81	70	76.786	69.74	105.70	17.3	58.2	50.22	1,825	6,150	10,797	3,923	1,322
WH	11	1	86		1.504	.99	3.01	8.3	30.0	.80	25	90	173	54	19
WH	12	2	84		2.527	1.98	3.79	18.1	73.3	2.20	69	278	473	148	60
WH	14	2	90	81	1.214	1.28	1.83	21.8	90.2	1.27	40	165	274	86	35
WH	15	1	90	106	.521	.64	1.04	23.2	105.0	.77	24	109	166	52	24
WH	16	1	81	154	.711	.99	2.13	23.0	100.0	1.57	49	213	337	105	46
WH	17	2	91	70	.811	1.28	1.62	21.5	82.5	1.12	35	134	240	75	29
WH	18	1	92		.362	.64	1.09	26.6	120.0	.93	29	130	199	62	28
WH	19	3	85	135	1.333	2.62	4.00	30.9	101.8	4.01	124	407	862	266	88
WH	22	4	91	98	1.103	2.91	3.31	25.7	115.7	2.72	85	383	586	183	82

TC PSTNDSUM		Stand Table Summary	Page 2 Date: 2/25/2010
T04N R07W S28 Ty0100	112.00	Project BIG3_JC2	Time: 4:35:17PM
T04N R07W S28 Ty0300 T04N R07W S29 Ty0400	48.00 55.00	Acres 215.00	Grown Year:

-					 -				· · · · · · · · · · · · · · · · · · ·				1		
S Spc T	рвн	Sample Trees	FF 16'	Tot Av Ht	Trees/ Acre	BA/ Acre	Logs Acre	Averag Net Cu.Ft.	e Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	Tons	Totals Cunits	MBF
WH	23	4	85	122	1.131	3.26	3.05	47.8	197.8	4.69	146	603	1,008	313	130
WH	24	4	81		1.151	3.62	3.45	47.5	164.4	5.39	164	568	1,158	352	122
WH	25	1	89	115	.188	.64	.56	48.3	223.3	.87	27	126	187	59	27
WH	26	1	70		.269	.99	.81	28.5	136.7	.74	23	110	158	49	24
WH	27	2	85		.410	1.63	1.23	55.3	264.2	2.18	68	325	469	146	70
WH	31	2	82		.379	1.98	1.14	90.2	410.0	3.28	103	466	705	220	100
WH	32	1	76		.178	.99	.53	87.7	363.3	1.50	47	194	321	100	42
WH	33	1	84		.167	.99	.50	93.9	493.3	1.52	47	247	326	101	53
WH	34	1	76		.157	.99	.47	105.9	440.0	1.60	50	208	344	108	45
WH	35	1	80		.149	.99	.59	74.5	387.5	1.42	44	230	304	95	49
WH	39	2	72		.239	1.98	.96	104.2	456.3	3.22	100	437	691	214	94
WH	43	1	77	148	.098	.99	.30	170.3	763.3	1.63	50	225	351	108	48
WH	Totals	38	85	112	14.601	32.41	35.41	38.1	159.5	43.41	1,348	5,649	9,334	2,898	1,214
BM	10	1	76	21	1.819	.99	1.82	5.9	20.0	.29	11	36	62	23	8
BM	14	1	77	52	.928	.99	.93	24.9	50.0	.61	23	46	132	50	10
BM	15	1	79	27	.809	.99	.81	15.7	30.0	.34	13	24	72	27	5
BM	16	1	80	48	.711	.99	.71	28.7	50.0	.54	20	36	116	44	8
BM	17	1	80	54	.629	.99	.63	36.9	70.0	.62	23	44	132	50	9
BM	18	2	82	56	.923	1.63	.92	34.5	101.4	.86	32	94	185	69	20
BM	21	2	79	56	.825	1.98	.83	34.6	75.0	.77	29	62	165	61	13
ВМ	22	1	81	67	.376	.99	.75	37.3	105.0	.77	28	79	165	60	17
ВМ	24	1	80	57	.316	.99	.32	77.1	140.0	.66	24	44	142	52	10
BM	34	1	76	35	.157	.99	.16	110.0	50.0	.46	17	8	99	37	2
BM	Totals	12	79	43	7.494	11.55	7.87	28.0	60.1	5.91	220	473	1,270	474	102
SS	41	1	81	132	.108	.99	.32	136.7	620.0	1.15	44	201	248	95	43
SS	Totals	1	81	132	.108	.99	.32	136.7	620.0	1.15	44	201	248	95	43
RC	27	1	77	101	.161	.64	.32	75.5	225.0	.78	24	72	167	52	16
RC	33	1	71	107	.167	.99	.33	117.1	215.0	1.28	39	72	275	84	15
RC	Totals	2	74	104	.328	1.63	.66	96.7	219.9	2.06	63	144	442	136	31
Totals		253	82	81	172.054	225.16	286.54	25.5	96.3	224.52	7,304	27,596	48,272	15,704	5,933

٨	_
1	î
r	ı

TC PSTATS	Δ	trea l			JECT S OJECT		STICS 3 JC2			PAGE DATE	1 2/25/2010
TWP RGE	SC	TRACT	,	TYPE		AC	RES	PLOTS	TREES	CuFt	BdFt
04N 07	28	1		0100		1	12.00	21	122	S	W
					TREES	I	ESTIMATED TOTAL		PERCENT SAMPLE	1, , , , , , , , , , , , , , , , , , ,	
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		21	122		5.8			•			
CRUISE		21	122		5.8		17,490		.7		
DBH COUN	Γ										
REFOREST											
COUNT											
BLANKS 100 %											
100 %											
					ND SUMM	IARY					
		AMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
1515		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DF R ALDER		58 28	69.1 54.3	17.1 13.4	70 50	27	110.5	15,881	15,598	3,995	3,992
K ALDEK WH		28 23	54.3 18.5	20.8	50 89	7	53.3 43.8	5,118 8,132	5,087 7,517	1,478 1,855	1,477 1,844
BL MAPLE		11	13.7	16.8	32	,	21.0	879	804	405	400
RC		1	.3	33.0	84		1.9	241	138	77	75
S SPRUCE		1	.2	41.0	114		1.9	386	386	85	85
TOTAL		122	156.2	16.5	62		232.4	30,637	29,531	7,895	7,873
	CE L 8.1	TIMES OU	T OF 100 TI	HE VOLUM							
CL 68.1 SD: 1.0		COEFF VAR.%	S.E.%		SAMPLE				OF TREES	REQ.	INF. POP.
CL 68.1 SD: 1.0 DF		COEFF VAR.% 89.8	S.E.% 11.8		SAMPLE DW 340	E TREES AVG 385	- BF HIGH 431		OF TREES		
CL 68.1 SD: 1.0 DF R ALDER		COEFF VAR.% 89.8 58.5	S.E.% 11.8 11.3		SAMPLE DW 340 102	E TREES AVG 385 115	- BF HIGH 431 128		OF TREES		
CL 68.1 SD: 1.0 DF R ALDER WH		COEFF VAR.% 89.8 58.5 83.4	S.E.% 11.8 11.3 17.8		SAMPLE DW 340 102 660	AVG 385 115 802	- BF HIGH 431 128 945		OF TREES		
CL 68.1 SD: 1.0 DF R ALDER		COEFF VAR.% 89.8 58.5	S.E.% 11.8 11.3		SAMPLE DW 340 102	E TREES AVG 385 115	- BF HIGH 431 128		OF TREES		
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE		COEFF VAR.% 89.8 58.5 83.4	S.E.% 11.8 11.3 17.8		SAMPLE DW 340 102 660	AVG 385 115 802	- BF HIGH 431 128 945		OF TREES		INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC		COEFF VAR.% 89.8 58.5 83.4	S.E.% 11.8 11.3 17.8		SAMPLE DW 340 102 660	AVG 385 115 802	- BF HIGH 431 128 945		OF TREES		
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE		COEFF VAR.% 89.8 58.5 83.4 73.9	S.E.% 11.8 11.3 17.8 23.3		SAMPLE DW 340 102 660 59	2 TREES AVG 385 115 802 76	- BF HIGH 431 128 945 94 94	#	OF TREES 5	10	1:
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.%	L	SAMPLE DW 340 102 660 59 344 SAMPLE	2 TREES AVG 385 115 802 76 386 2 TREES	- BF HIGH 431 128 945 94 - CF HIGH	#	OF TREES 5	10	1:
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3	L	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95	- BF HIGH 431 128 945 94 428 - CF HIGH	#	OF TREES 5 576 OF TREES	10 144 REO.	1: 6- INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0	L	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35	- BF HIGH 431 128 945 94 428 - CF HIGH	#	OF TREES 5 576 OF TREES	10 144 REO.	1: 6- INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3	L	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95	- BF HIGH 431 128 945 94 428 - CF HIGH	#	OF TREES 5 576 OF TREES	10 144 REO.	1: 6- INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2	L	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217	#	OF TREES 5 576 OF TREES	10 144 REO.	1: 6- INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5	L	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34	385 115 802 76 386 2 TREES AVG 95 35 187 44	- BF HIGH 431 128 945 94 428 - CF HIGH 105 39 217 53	#	OF TREES 5 576 OF TREES	10 144 REO.	1: 6- INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2	L	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217	#	OF TREES 5 576 OF TREES	10 144 REO.	6- INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5	IC	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53	#	576 OF TREES 5	144 REQ. 10	6- INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 103.1 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.%	IC	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A	2 TREES AVG 385 115 802 76 2 TREES AVG 95 35 187 44 98 ACRE AVG	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53	#	576 OF TREES 5 424	144 REQ. 10	6. INF. POP. 1. INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 103.1 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0	IC	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A DW 53	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44 98 ACRE AVG 69	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86	#	576 OF TREES 5 424 OF PLOTS	144 REO. 10	64 INF. POP. 1: 47
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 103.1 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0 40.2	IC	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A DW 53 33	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44 98 CCRE AVG 69 54	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86 76	#	576 OF TREES 5 424 OF PLOTS	144 REO. 10	6. INF. POP. 1. INF. POP.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 103.1 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0 40.2 53.5	IC	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A DW 53 33 9	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44 98 ACRE AVG 69 54 19	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86 76 28	#	576 OF TREES 5 424 OF PLOTS	144 REO. 10	64 INF. POP. 1: 47
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF L GR TOTAL		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 103.1 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0 40.2	IC	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A DW 53 33	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44 98 CCRE AVG 69 54	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86 76	#	576 OF TREES 5 424 OF PLOTS	144 REO. 10	64 INF. POP. 1: 47
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 COEFF VAR.% 107.2 179.7 239.4 181.9	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0 40.2 53.5 40.6	IC	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A DW 53 33 9	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44 98 CRE AVG 69 54 19 14	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86 76 28 19	#	576 OF TREES 5 424 OF PLOTS	144 REO. 10	64 INF. POP. 1: 47
CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1,0 DF R ALDER WH BL MAPLE RC CL 68.1 SD: 1,0		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 COEFF VAR.% 107.2 179.7 239.4 181.9 458.3	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0 40.2 53.5 40.6 102.4	IC	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A DW 53 33 9	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44 98 ACRE AVG 69 54 19 14 0	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86 76 28 19 1	#	576 OF TREES 5 424 OF PLOTS	144 REO. 10	6- INF. POP. 1: 47 INF. POP. 1:
CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1,0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1,0		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 COEFF VAR.% 107.2 179.7 239.4 181.9 458.3 458.3	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0 40.2 53.5 40.6 102.4 102.4	IC	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A DW 53 33 9 8	2 TREES AVG 385 115 802 76 2 TREES AVG 95 35 187 44 98 CCRE AVG 69 54 19 14 0 0 156	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86 76 28 19 1 0 177	#	576 OF TREES 5 424 OF PLOTS 5	10 144 REO. 10 106 REO. 10	6- INF. POP. 1: 47 INF. POP. 1:
CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 103.1 COEFF VAR.% 107.2 179.7 239.4 181.9 458.3 458.3 60.3 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0 40.2 53.5 40.6 102.4 102.4 13.5 S.E.%	I.C.	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A DW 53 33 9 8	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44 98 ACRE AVG 69 54 19 14 0 0 156 AREA/AC AVG	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86 76 28 19 1 0 177 CRE HIGH	#	576 OF TREES 5 424 OF PLOTS 5	10 144 REO. 10 106 REO. 10	1. 6. INF. POP. 1: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BL MAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 COEFF VAR.% 107.2 179.7 239.4 181.9 458.3 458.3 60.3 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0 40.2 53.5 40.6 102.4 102.4 13.5 S.E.% 22.9	I.C.	SAMPLE DW 340 102 6660 59 344 SAMPLE DW 85 31 157 34 88 TREES/ADW 53 33 9 8 135 BASAL ADW 85	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44 98 ACRE AVG 69 54 19 14 0 0 156 AREA/AC AVG 110	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86 76 28 19 1 0 177 CRE HIGH 136	#	576 OF TREES 5 424 OF PLOTS 5	10 144 REO. 10 106 REO. 10	1. 6. INF. POP. 1: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0 DF R ALDER WH BLMAPLE RC S SPRUCE TOTAL CL 68.1 SD: 1.0		COEFF VAR.% 89.8 58.5 83.4 73.9 120.1 COEFF VAR.% 78.7 62.6 75.9 71.1 103.1 COEFF VAR.% 107.2 179.7 239.4 181.9 458.3 458.3 60.3 COEFF VAR.%	S.E.% 11.8 11.3 17.8 23.3 10.9 S.E.% 10.3 12.0 16.2 22.5 9.3 S.E.% 24.0 40.2 53.5 40.6 102.4 102.4 13.5 S.E.%	I.C.	SAMPLE DW 340 102 660 59 344 SAMPLE DW 85 31 157 34 88 TREES/A DW 53 33 9 8	2 TREES AVG 385 115 802 76 386 2 TREES AVG 95 35 187 44 98 ACRE AVG 69 54 19 14 0 0 156 AREA/AC AVG	-BF HIGH 431 128 945 94 428 -CF HIGH 105 39 217 53 107 HIGH 86 76 28 19 1 0 177 CRE HIGH	#	576 OF TREES 5 424 OF PLOTS 5	10 144 REO. 10 106 REO. 10	1: 64 INF. POP. 1: INF. POP.

TC PS	TATS				PROJEC PROJEC		ISTICS G3 JC2			PAGE DATE	2 2/25/2010
TWP	RGE	SC	TRACT	TY	PE	A	CRES	PLOTS	TREES	CuFt	BdFt
04N	07	28	1	010	0		112.00	21	122	S	W
CL	68.1	,	COEFF		BASA	AL AREA/	ACRE		# OF PLO	TS REQ.	INF. POP
SD:	1.00		VAR.	S.E.%	LOW	AVG	HIGH		5	10	15
RC			458.3	102.4		2	4				
S SPI	RUCE		458.3	102.4		2	4				
TOT	'AL		35.9	8.0	214	232	251		54	14	6
CL	68.1		COEFF		NET	BF/ACRE			# OF PLOTS	INF. POP.	
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF			106.0	23.7	11,901	15,598	19,295				
R AL	DER		169.5	37.9	3,160	5,087	7,014				
WH			228.5	51.1	3,679	7,517	11,356				
BLM	IAPLE		185.1	41.4	471	804	1,137				
RC			458.3	102.4		138	279				
S SPF	RUCE		458.3	102.4		386	782				
TOT	AL		49.8	11.1	26,244	29,531	32,817		104	26	12
CL	68.1		COEFF		NET	CUFT FT/	ACRE		# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%	LOW	AVG	HIGH		5	10	15
DF			105.5	23.6	3,051	3,992	4,932	****			
R AL	DER		166.6	37.2	927	1,477	2,027				
WH			228.2	51.0	903	1,844	2,784				
BL M	IAPLE		181.3	40.5	238	400	563				
RC			458.3	102.4		75	152				
S SPF	RUCE		458.3	102.4		85	172				
TOT	AL		44.6	10.0	7,087	7,873	8,659		84	21	9

CRUISE REPORT Big 3 Junction 341-10-023

1. Acreage Calculation:

Area 1 has 112 net acres of (MC). Area 2 is 103 net acres of (MC). All acres were determined using ArcGIS.

2. Cruise Method:

The area was cruised by contract cruisers. Cruised data from the applicable stands were transfered into the Super Ace 2004 program. The plots were cruised using a 33.6 BAF. Take trees and saw grades were assigned based on the height, diameter and damage/defect measurements provided by the cruise and observations made in the field. Leave trees were selected based upon the resulting cruise data. Volumes and statistics were generated from plot data by using the Super Ace 2004 program.

3. Sampling Intensity:

	Area 1 & 2
	Actual Take
CV	54%
SE	8%
# of Plots	44

4. Form Factors:

Form factors were estimated using a form point of 16 feet.

5. Height Standards:

Merchantable heights were estimated to the nearest foot.

6. Diameter Standards:

Diameters were measured outside bark at breast height to the nearest inch.

7. Grading System:

All trees were cruised for saw log grades favoring 40 foot log segments followed by 32 and 24 foot lengths.

8. Merchantable Top:

Conifer merchantable tops were measured to 7 inches, hardwood to 8 inches or 25% of DOB.

9. Computation Procedures:

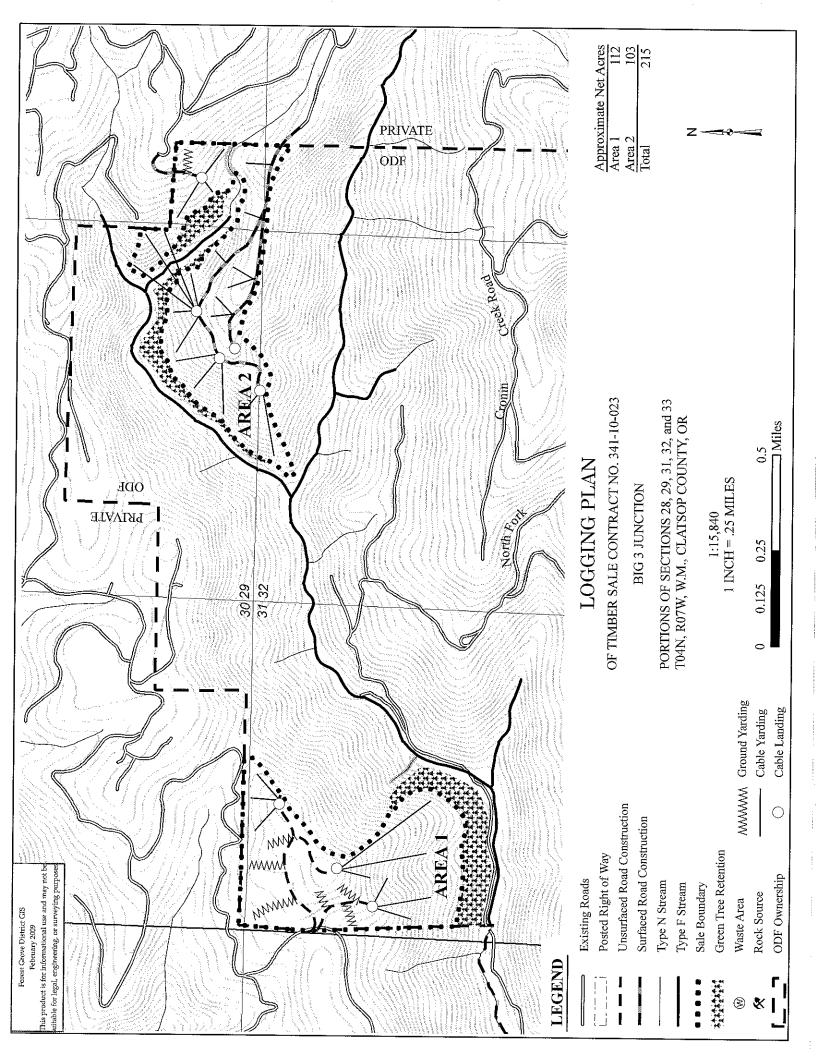
Volumes for Areas 1 and 2 were computed using the Super Ace 2004 program.

10. Cruisers:

The sale areas 1 and 2 were cruised in 2008. Office calculations were prepared by Tara Carlson in October 2009.

11. Signatures:

Prepared by:


Tara Carlson

Date 01/29/10

Unit Forester:

Erik Marcy

Date

