District: Astoria Date: July July 07, 2008 ### cost summary | | Conifer | Hardwood | Total | |----------------------------|----------------|-------------------|----------------| | Gross Timber
Sale Value | \$1,683,296.04 | \$528,149.88 | \$2,211,445.92 | | | | Project Work: | \$(338,821.00) | | | | Advertised Value: | \$1,872,624.92 | "STEWARDSHIP IN FORESTRY" District: **Astoria** Date: July 07, 2008 ### timber description Location: Portions of Sections 17, 18, 19, and 20, T4N, R8W, W.M., Clatsop County, Oregon Stand Stocking: 80% | SpecieName | AvgDBH | Amortization (%) | Recovery (%) | |-----------------------|--------|------------------|--------------| | Douglas - Fir | 20 | 0 | 96 | | Western Hemlock / Fir | 20 | 0 | 90 | | Sitka Spruce | 23 | 0 | 98 | | Alder (Red) | 16 | 0 | 90 | | Volume by Grade | 28 | 38 | 4 S | Camprur | SM | Total | |-----------------------|-------|-------|------------|---------|-----|-------| | Douglas - Fir | 3,561 | 1,178 | 184 | 0 | 193 | 5,116 | | Western Hemlock / Fir | 1,183 | 306 | 57 | 0 | 0 | 1,546 | | Sitka Spruce | 152 | 127 | 17 | 0 | 0 | 296 | | Alder (Red) | 0 | 0 | 0 | 1,227 | 0 | 1,227 | | Total | 4,896 | 1,611 | 258 | 1,227 | 193 | 8,185 | "STEWARDSHIP IN FORESTRY" District: Astoria Date: July 07, 2008 comments: Pond Values Used: 2nd Quarter Calendar Year 2008. Log Markets: Mist, Clatskanie, Tillamook, Forest Grove. Western Red Cedar Stumpage Price = Pond Value minus Logging Cost \$894.16/MBF = \$1,075/MBF - \$180.84/MBF SCALING COST ALLOWANCE = \$5.00/MBF FUEL COST ALLOWANCE = \$4.50/Gallon HAULING COST ALLOWANCE Hauling costs equivalent to \$700 daily truck cost. Other Costs (with Profit & Risk to be added): 100% Branding and Painting: \$1MBF x 8,185 MBF = \$8,185 Additional log loader piling: 3hrs/landing x 12 landings x 85/hr = \$3,060 Logger's Choice Landing Area 5 Construction = 1 @ \$375 Rock = 60 cubic yards Rock Haul = \$5.34/cy X 60 = \$320 TOTAL Other Costs (with Profit & Risk to be added) = \$11,940 OTHER COSTS (No Profit and Risk added): Excavator Slash Piling: 104 hrs x \$120/hr = \$12,480 Excavator move-in: 1 move in x \$945/move in = \$945 TOTAL Other Costs (No Profit and Risk added) = \$13,425 "STEWARDSHIP IN FORESTRY" **Astoria** District: Date: July 07, 2008 ### logging conditions combination#: 1 Douglas - Fir 22.28% Western Hemlock / Fir 24.37% Sitka Spruce Alder (Red) 24.79% 20.70% yarding distance: Medium (800 ft) downhill yarding: Process: Manual Delimbing logging system: tree size: Shovel Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF loads / day: 7.0 bd. ft / load: 4,100 cost / mbf: \$87.27 machines: Shovel Logger combination#: 2 Douglas - Fir 54.55% Western Hemlock / Fir 59.66% Sitka Spruce 60.69% Alder (Red) varding distance: Medium (800 ft) 50.69% downhill yarding: logging system: Cable: Large Tower >=70 Process: Manual Delimbing tree size: Mature / Regen Cut (900 Bft/tree), 3-5 logs/MBF bd. ft / load: 4,200 loads / day: cost / mbf: \$97.71 machines: Log Loader (A) Tower Yarder (Large) combination#: 3 Douglas - Fir 3.24% Western Hemlock / Fir 2.24% Sitka Spruce Alder (Red) 2.03% yarding distance: Medium (800 ft) 4.00% bd. ft / load: downhill varding: logging system: Track Skidder Process: Manual Falling/Delimbing Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF tree size: loads / day: 8.0 4,000 cost / mbf: \$107.51 machines: Log Loader (B) Track Skidder combination#: 4 Douglas - Fir 19.92% Western Hemlock / Fir 13.74% Sitka Spruce 12.49% Alder (Red) 24.60% "STEWARDSHIP IN FORESTRY" ### Timber Sale Appraisal **Progeny Split** Sale 341-09-24 July 07, 2008 District: **Astoria** yarding distance: Medium (800 ft) downhill yarding: Date: No logging system: Cable: Medium Tower >40 - <70 Process: Manual Falling/Delimbing 4,000 tree size: loads / day: machines: Mature / Partial Cut (900 Bft/tree), 3-5 logs/MBF 6.0 bd. ft / load: \$144.17 cost / mbf: Log Loader (A) Tower Yarder (Medium) 7/7/08 5 "STEWARDSHIP IN FORESTRY" District: Astoria Date: July 07, 2008 ### logging costs **Operating Seasons:** 2.00 **Profit Risk:** 12.00% **Project Costs:** \$338,821.00 Other Costs (P/R): \$11,940.00 Slash Disposal: \$0.00 **Other Costs:** \$13,425.00 ### Miles of Road **Road Maintenance:** \$3.48 | Dirt | Rock
(Contractor) | Rock
(State) | Paved | |------|----------------------|-----------------|-------| | 0.0 | 0.0 | 0.0 | 0.0 | ### Hauling Costs | Species | \$/MBF | Trips/Day | MBF / Load | |-----------------------|--------|-----------|------------| | Douglas - Fir | \$0.00 | 3.0 | 4.6 | | Western Hemlock / Fir | \$0.00 | 3.0 | 3.0 | | Sitka Spruce | \$0.00 | 2.0 | 4.0 | | Alder (Red) | \$0.00 | 3.0 | 3.0 | "STEWARDSHIP IN FORESTRY" District: Astoria Date: July 07, 2008 ### logging costs breakdown | Logging | Road
Maint | Fire
Protect | Hauling | Other
P/R appl | Profit &
Risk | Slash
Disposal | Scaling | Other | Total | |------------|---------------|-----------------|---------|-------------------|------------------|-------------------|---------|--------|----------| | Douglas - | Fir | | | | | | | | | | \$104.96 | \$3.62 | \$1.07 | \$47.10 | \$1.46 | \$18.99 | \$0.00 | \$5.00 | \$1.64 | \$183.84 | | Western F | lemlock / | Fir | | | | | | | | | \$101.77 | \$3.83 | \$1.07 | \$76.38 | \$1.46 | \$22.14 | \$0.00 | \$5.00 | \$1.64 | \$213.29 | | Sitka Spru | ice | | | | | | | | | | \$101.13 | \$3.55 | \$1.07 | \$79.68 | \$1.46 | \$22.43 | \$0.00 | \$5.00 | \$1.64 | \$215.96 | | Alder (Red | d) | | | | | | | | | | \$107.37 | \$3.83 | \$1.07 | \$76.38 | \$1.46 | \$22.81 | \$0.00 | \$5.00 | \$1.64 | \$219.56 | | Specie | Amortization | Pond Value | Stumpage | Amortized | |-----------------------|--------------|------------|----------|-----------| | Douglas - Fir | \$0.00 | \$465.30 | \$281.46 | \$0.00 | | Western Hemlock / Fir | \$0.00 | \$341.23 | \$127.94 | \$0.00 | | Sitka Spruce | \$0.00 | \$369.85 | \$153.89 | \$0.00 | | Alder (Red) | \$0.00 | \$650.00 | \$430.44 | \$0.00 | "STEWARDSHIP IN FORESTRY" District: Astoria Date: July 07, 2008 ### summary ### Amortized | Specie | MBF | Value | Total | |-----------------------|-----|--------|--------| | Douglas - Fir | 0 | \$0.00 | \$0.00 | | Western Hemlock / Fir | 0 | \$0.00 | \$0.00 | | Sitka Spruce | 0 | \$0.00 | \$0.00 | | Alder (Red) | 0 | \$0.00 | \$0.00 | ### Unamortized | | 1 | T | T | |-----------------------|-------|----------|----------------| | Specie | MBF | Value | Total | | Douglas - Fir | 5,116 | \$281.46 | \$1,439,949.36 | | Western Hemlock / Fir | 1,546 | \$127.94 | \$197,795.24 | | Sitka Spruce | 296 | \$153.89 | \$45,551.44 | | Alder (Red) | 1,227 | \$430.44 | \$528,149.88 | ### **Gross Timber Sale Value** Recovery: \$2,211,445.92 Prepared by: John Tillotson Phone: 503-325-5451 ### **SUMMARY OF ALL PROJECT COSTS** | SALE NAME: | Progeny Split | | | | | | |--------------------------------|---|-------------|-----------------------------|---------------------------------------|----------------------------|------------| | NEW CONSTR | RUCTION: | | | | | | | Project No. 1 | Road segment Sale Access Road Construction | _ | Length/Sta
67.35 | | <u>Cost</u>
\$54,409.00 | _ | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | TOTALS 1 | .28 miles | | 67.35 Stations | <u> </u> | \$54,409 | | ROAD IMPRO | VEMENT | | | | | | | Project No. 2 | Road segment Road Improvement | _ | <u>Length/Sta</u>
219.50 | | <u>Cost</u>
\$102,876 | | | | | <u> </u> | | | | | | | | _ | | | | | | | | | | | | | | | TOTALS 4 | .16 miles | 2 | 19.50 Stations | | \$102,876 | | SPECIAL PRO | JECTS | | | | | | | <u> </u> | | Description | | | Cost | | | Project No. 3 | Cole Mountain Crushing | | | | \$113,705 | | | Project No. 4
Project No. 5 | Quarry Test Drilling Vacating | | | | \$28,808
\$9,964 | | | Project No. 6 | Fall Creek Stream Enhancement | | | | \$5,895 | | | | Project Road Maintenance | | | | \$15,300 | | | | TOTALS | 1.00 | | | 410,000 | \$173,672 | | MOVE IN: | | | | | | | | MOVE III. | F | Equipment | | | <u>Cost</u> | | | | Grader (14G) | | | | \$653 | | | | Vibratory Roller x 2 @ \$653 each
Water Truck (2,500 gal) | | | | \$1,306
\$160 | | | | D-8 Dozer x 1 @ \$1,180 each | | | | \$1,180 | | | | Excavator (C330) x 1 @ \$1,180 e | each | | | \$1,180 | | | | FE Loader (C966) x 1 @ \$664 ea | ich | | | \$664 | | | | 12cy Dump Trucks x 6 @ \$137 e
20cy Dump Trucks x 4 @ \$161 e | ach | | | \$822
\$644 | | | | Drill and Compressor x1 @ \$653
Rubber Tired Skidder x 1 @ \$602 | each | | | \$653
\$602 | | | | | - | | | | | | | TOTAL | | | | | \$7,864 | | ODANO TOTA | | | | | | £220 024 | | GRAND TOTA | <u> </u> | | | | | \$338,821 | | | | | | | | | | Compiled By | John Tillotson | | | | Date: | 02/26/2008 | | Joniphou by. | | | | | | | ### SUMMARY OF CONSTRUCTION COSTS | LE NAME:
DAD: | | | -1F(11.15), 4A-4B
J(4.5), 4K, 4L, 5A- | | NEW C | ONSTRUCTION: _
IMPROVEMENT: _ | 67.35 | STATIONS | 1.28
 | |------------------|-----------------------------|--------------|--|-------------------|----------|----------------------------------|------------|---------------|----------| | INTS: | 4E-4F(3.0), 4G-4 | п(1.5), 41-4 | 3(4.5), 4K, 4L, 5A- | 3B(2.3), 3C | | | | | | | EARING & | GRUBBING | | | | | | | | | | | Method | 1014 | * | Acres/amount | x | Rate | = | Cost | | | | Scatter Outside of | OT HUVV | \$/ac | 7.00 | × | \$756.00 | = | \$5,292.00 | | | | - | | ~ ~ | - | x
x | | = | | | | B TOTAL F | OR CLEARING & | GRUBBING | 3 | | | | • | | \$5,292 | | | | - | | | | | | | | | CAVATION | Material | | ı | Cy/amount | x | Rate | = 1 | Cost | | | | Material | | | Oylaniodii | × | Neic | = | 0031 | | | | Field design upto | 200' drift | \$/sta | 67.35 | × | \$160.00 | = 1 | \$10,776.00 | | | | | | | | × | | = | V.10(1.1.0.00 | | | | End haul from 4L | to 4I-4J (0 | +00
to 0+50) \$/cy | 60.00 | × | \$3.40 | = [| \$204,00 | | | | Embankment cor | mpaction \$ | /cy | 60.00 | x | \$0.60 | = [| \$36.00 | | | | | | | | × | | = [| | | | | Landing Construction | ction | \$/landing | 15.00 | x | \$327.00 | = | \$4,905.00 | | | | | | | | x | | = <u>j</u> | | | | | | | | | × | | = | | | | | | | | | x
x | | = - | | | | | OR EXCAVATION | | | | | | | | \$15,921 | | Location | TERIALS AND IN:
Dia/type | Lineal ft. | Rate | Cost | Location | Dia/type | Lineal ft. | Rate | Cost | | 0+00 | 18" CPP | 40 | \$17.64 | \$705.60 | Location | Dientype | Cinoarte | Itale | CUSI | | 1+70 | 18" CPP | 35 | \$17.64 | \$617.40 | | | | | | | 18+00 | 18" CPP | 35 | \$17.64 | \$617.40 | | | | | | | 0.00 | 400.000 | | 1 | | | 1 | | | | | 3+00 | 18" CPP | 30 | \$17.64 | \$529.20 | | - | | | | | 0+00 | 18" CPP | 35 | \$17.64 | \$617.40 | | 1 | | | | | 0+00 | 18" CPP | 35 | \$17.64 | \$617.40 | - | | | | | | | | | | | | | | | | | 0+00 | 18" CPP | 35 | \$17.64 | \$617,40 | | | | | | | | | | | | | | | | | | | - | • | | | Description | | Quantity | Rate | Cost | | | | Other/miscellane | ous: | | Pescribrion | | wantey | Nate | COSI | | | | | | | | | 1 1 | | | | | | | markers: | 6 X 2.5 Fibero | lass Carsonite Po | st | 7 | \$18,00 | \$126.00 | | | | Culvert stakes & | markers: | 6' X 2.5' Fiberg | lass Carsonite Po | st | 7 | \$18.00 | \$126.00 | | Subtotal of Clearing, Exc., Culv. 1A to 1B 4A to 4B 4C to 4D 4E to 4F 4I to 4J | Paper | SURFACING | Subgrade prep: | Grade, Shape
Grade, Shape
Subgrade Con | and Ditch 1 | | | | | Stations/
amount
58.65
8.70
58.65 | x
x
x | Rate/
sta/amt
\$20.85
\$15.40
\$16.95 | Cost
\$1,222.85
\$133.98
\$994.12 | |--|---|--|--|------------------------------|---------------------------------|--------------------|------------------------------------|------------------------|---|----------------------------|---|--| | Description 4-07 Colabeled 1A | Application | Rock Size
and Type | | Rock
(inches) | 1A to
Volume
pe | 1B
(CY)
r | 26+4
Numi
of | 40
ber | VOLUME
(CY) | Sta J
amt. | | | | Total Food Segment | Junctions Turnouts | 4"-0" Crushed
4"-0" Crushed | 1A
3+40, 7+85,
12+85, 17+70 | 9 | junction
TO | 24
22 | junctions
TO's | 1 | 24
88 | \$4.58
\$4.58 | \$110
\$403 | | | Second Color | Total Rock for Road Segr
ROAD SEGMENT | ment
1C to 1D | | 1A to 18
Depth of
Rock | POINT TO
1C to | POINT
1D | Sta. to
8+0
Num | i0
ber | 991
TOTAL
VOLUME | Rate!
Sta.! | | \$4,540 | | Landrigue | Base Rock
Junctions
Turnouts | 4"-0" Crushed
4"-0" Crushed
4"-0" Crushed | 1C to 1D
1C | 9
9
9 | station
junction
TO | 49
24
22 | stations
junctions
TO's | 8.00
1
1 | 392
24
22 | \$4.58
\$4.58
\$4.58 | \$110
\$101 | | | Application | Landings
Total Rock for Road Segr | 6"-0" Pit-run
ment: | | N/A
1C to 1D | Landing
POINT TO | 80
POINT | Landings
Sta. to | 1
Sta. | 80
530
TOTAL | \$5.34 | \$427 | \$2,488 | | Turnarounds | Base Rock
Junctions | and Type
4"-0" Crushed
4"-0" Crushed | 1E-1F
1E | (inches)
9
9 | pe
station
junction | r
49
24 | of
stations
junctions | 11.15
1 | (CY)
546
24 | amt.
\$4.58
\$4.58 | \$2,502
\$110 | | | Application Rock Size Location Continue (CV) Number Volume (Stat Cost State Cost | Turnarounds
Landings
Total Rock for Road Segr | 4"-0" Crushed
6"-0" Pit-run
ment: | | N/A
N/A | TA
Landing | 12
60 | TA's
Landings | 1 | 12
60 | \$4.58 | \$55 | \$3,189 | | Junctions | Application Base Rock | Rock Size
and Type
4"-0" Crushed | 0+00 to 8+50 | Rock
(inches) | Volume
pe
station | : (CY)
r
49 | 0+00 to
Num
of
stations | 8+50
ber
8.50 | VOLUME
(CY)
417 | Sta./
amt.
\$4.58 | \$1,908 | | | Total Rock for Road Segment | Junctions
Turnouts
Turnarounds | 3/4" -0" Crushed
4"-0" Crushed
4"-0" Crushed | 4A
2+50
5+00 | N/A
9
N/A | junction
TO
TA | 20
24
12 | junctions
TO's
TA's | 1 1 | 20
24
12 | \$9.43
\$4.58
\$4.58 | \$189
\$110
\$55 | | | Base Rock | Total Rock for Road Segr
ROAD SEGMENT | ment
4C to 4D | • | 4A to 4B
Depth of | POINT TO
4C to | POINT
4D | Sta. to
0+00 to | Sta.
1+80 | 641
TOTAL | Ratel | | \$3,122 | | Total Rock for Road Segment: 4C to 4D PCINT TO POINT Sta to Sta | Base Rock
Junctions
Junctions | 4"-0" Crushed
4"-0" Crushed
3/4"-0" Crushed | 0+00 to 1+80
4C
4C | 9
9
N/A | station
junction
junction | 49
24
20 | stations
junctions
junctions | 1.80
1
1 | 88
24
20 | \$4.58
\$4.58
\$9.43 | \$110
\$189 | | | Base Rock | Total Rock for Road Seg
ROAD SEGMENT | ment:
4E to 4F | 1 40 | 4C to 4D
Depth of | POINT TO
4E to | POINT
4F | Sta. to
0+00 to | • Sta .
3+00 | 192
TOTAL | Ratel | | \$1,023 | | Total Rock for Road Segment | Base Rock
Junctions
Junctions | and Type
4"-0" Crushed
4"-0" Crushed
3/4"-0" Crushed | 0+00 to 3+00
4E
4E | (inches)
9
9
N/A | station
junction
junction | 49
24
20 | stations
junctions
junctions | 3.00
1.00 | 147
24
20 | \$4.58
\$4.58
\$9.43 | \$110
\$189 | | | Base Rock | Total Rock for Road Seg
ROAD SEGMENT | ment:
4G to 4H | 4- | 4E to 4F
Depth of | POINT TO
4G to | POINT
4H | Sta. t o
0+00 to | Sta.
1+50 | 251
TOTAL | Rate! | | \$1,292 | | Cost | Base Rock
Junctions
Landings | and Type 4"-0" Crushed 4"-0" Crushed 6"-0" Pit-run | 0+00 to 1+50
4G | (inches)
9
9
N/A | pe
station
junction | F 49 24 | stations
junctions | 1.50 | (CY)
74
24
60 | amt.
\$4.58
\$4.58 | \$110 | | | Base Rock | ROAD SEGMENT | 4i to 4J
Rock Size | (praties | Depth of
Rock | 4 to
Volume | 4J
≘(CY) | O+00 to
Num | 4+50
bet | TOTAL
VOLUME | Sta./ | Cost | \$767 | | ROAD SEGMENT | Junctions
Turnarounds
Landings | 4"-0" Crushed
4"-0" Crushed
4"-0" Crushed
6"-0" Pit-run | 0+00 to 4+50
4I
2+90 | 9
9
N/A
N/A | station
junction
TA | 49
24
12 | stations
ĵunctions
TA's | 4.50
1
1 | 221
24
12
120 | \$4.58
\$4.58
\$4.58 | \$110
\$55 | | | Junctions 3/4"-0" Crushed 4K N/A junction 20 junctions 1 20 \$9.43 \$189 Landings 6"-0" Pit-run 4K N/A Landing 60 Landings 1 60 \$5.34 \$320 Total Rock for Road Segment 4K ROAD SEGMENT 4L POINT TO POINT Sta. to Sta. | ROAD SEGMENT | 4K
Rock Size | Location | Depth of Rock | Volumi | c
e (CY) | N/.
Num | A
ber | TOTAL
VOLUME | Sta./ | Cost | \$1,816 | | Depth of Rock Size Rock Volume (CY) Number VoluME Sta. J | Junctions
Landings
Total Rock for Road Seg | 3/4"-0" Crushed
6"-0" Pit-run
ment: | 4K | N/A
N/A | junction
Landing | 20
60 | junctions
Landings | 1 1 | 20
60 | \$9.43 | | | | Total Rock for Road Segment | Application Junctions | Rock Size
and Type
4"-0" Crushed | 4L | Rock
(inches)
N/A | 4l
Volum
pe
junction | a (CY)
of
12 | N/.
Num
o
junctions | A
iber
f 1 | VOLUME
(CY)
12 | Sta./
amt.
\$4.58 | \$55 | | | Application Rock Size Rock Volume (C1) Number Volume Star | Total Rock for Road Seg
ROAD SEGMENT | ment: | <u>4</u> L | 4L | POINT TO | O POINT | Sta. to
0+00 to | Sta.
2+50 | 72 | Rate/ | | | | | GRAND TOTAL | | | | | | | | | | | \$54,409
| |------------------------|--------------------------------|--------------|--|---------------------|----------------|-----------------------|------------------|------------------|------------------|------------------------------------|-----------|----------------------| | | | | | | | | | | | of Surfacing &
tal of Clearing, | | \$28,748
\$25,661 | | | SUB TOTAL FOR | SPECIAL PRO | JECTS | | | | | | Subtatal. | of Curfoning P | Snoo Proi | \$100.745 | | | | AMMAIAI BT. | | | | | | | | - | | | | | | | | De | scription | | | | Cost | | | | | **** | SPECIAL PROJEC | CTS | | | | | | | | | | | | | OUD TOTAL TOR | OUTH HOUTO | | 1 | 0.10 | 0,004 | | , 50 | 1,507 | 1,004 | | 420,170 | | | SUB TOTAL FOR | SURFACING | - | | 6"-0"pr
840 | 4*-0" er 3,364 | 1/2"-0" cr
20 | 3/4"+0" cr
80 | Totai
4,304 | 4.304 | | \$28,748 | | | | | ······································ | | | • | | | | | | | | | | | | | oact: 9" d | epth in two lifts | | | 117.30 | \$47.42 | \$5,562 | | | | | Processing: | | Description | | | | | No.sta | Rate/sta | Cost | | | Total Rock for Road Se | gment | | 5C | | | | | 100 | | | \$616 | | | Landings | 6"-0" | 5C | N/A | Landing | 80 | Landings | 1 | 80 | \$5.34 | \$427 | | | | Junctions | 1 1/2"-0" Crushed | 5C | N/A | junction | 20 | junctions | 1 | 20 | \$9.43 | \$189 | | | | Application | Rock Size
and Type | Location | Rock
(Inches) | Volume
per | | Numb
of | er | VOLUME
(GY) | Sta./
and. | COST | | | | | | •••••• | Depth of | 5C | | | | TOTAL | Rater | Cost | | | | ROAD SEGMENT | 5C | | OA 10 00 | POINT TO | POINT | Sta.to. | Sta | | | | Ψ1,000 | | | Total Rock for Road Se | | 36 | 5A to 5B | Lancing | 00 | Landings | ' | 227 | 30.04 | \$7 <u>21</u>] | \$1,098 | | | Junctions
Landings | 4"-0" Crushed
6"-0" Pit-run | 5A
5B | N/A | junction
Landing | 80 | Landings | - 1 | 80 | \$5.34 | \$427 | | | | Base Rock | 4"-0" Crushed | 0+00 to 2+50 | 9 | station | 49
24 | stations
junctions | 2.50 | 123
24 | \$4.58
\$4.58 | \$561
\$110 | | | ### SUMMARY OF CONSTRUCTION COSTS | OAD: | Progeny Split
11-I2(140.2),I3-I4 | (10.0),15-16(36 | 6.4),17-18(2.0),1 | <u>9</u> -110(30.9) | | ONSTRUCTION: _
MPROVEMENT: _ | | STATIONS | MI
4.16 MI | |---|---|--|--|--|----------|-------------------------------------|-------------------------|---------------------|---------------| | OINTS: | | | | | | | | | | | LEARING & | GRUBBING | | | | | | | | | | | Method | | | Acres/amount | х | Rate | = | Cost | | | to I2 | Turnout Improvem | ent 65+70 C31 | 15 \$/hr | 2.00 | × | \$89.00 | = L | \$178.00 | | | to 16 | Turnout Improvem | ent 7+00 C315 | 5 \$/hr | 2.00 | × | \$89.00 | = [| \$178.00 | | | to I6 | Turnout Improvem | ent 16+00 C31 | 5 \$/hr | 2.00 | | \$89.00 | L | \$178.00 | | | to I8 | Landing Improvem | ent 2+00 C315 | 5 \$ <i>l</i> hr | 2.00 | × | \$89.00 | = | \$178.00 | | | to 110 | LandingImprovem | ent 30+90 C31 | 18 \$/hr | 2.00 | | \$89.00 | | \$178.00 | | | UB TOTAL F | OR CLEARING & | GRUBBING | | | | | | | \$890 | | XCAVATION | | | | | | | | | | | | Material | | | Cy/amount | x | Rate | = | Cost | | | to 1B 119+40 | Remove bank mat | terial \$/hr | | 1.00 | x | \$89.00 | = | \$89.00 | | | | Haul bank materia | ıl \$/hr | | 1.00 | x | \$70.00 | = | \$70.00 | | | | Remove bank mat | | | 3.00 | × | \$89.00 | = | \$267.00 | | | 34 +6 5 | Haut bank materia | l \$/hr | | 3.00 | x | \$70.00 | = | \$210.00 | | | | | | | | × | | = [| | | | | | | | | x | | = [| | | | | | | | | x | | = [| | | | | | | | | × | | = . [| | | | | | | | | x | | = ' | | | | | | | | | × | | = | | | | | | | | | × | | = | | | | ID TOTAL E | ヘロ にとぐないなせいき | M | | | | | | | \$636 | | ULVERT MA | OR EXCAVATION TERIALS AND IN Dia/type | ISTALLATION | | Cost | Location | Dia/type | Lineal ft. | Rate | \$636
Cost | | ULVERT MA
Location | TERIALS AND IN | ISTALLATION | Rate | Cost \$617.40 | Location | Dia/type | Lineal ft. | Rate | \$636 | | CULVERT MA
Location
7+75 | TERIALS AND IN Dia/type 18" CPP | ISTALLATION
Lineal ft.
35 | Rate
\$17.64 | \$617.40 | Location | Dia/type | Lineal ft. | Rate | | | CULVERT MA
Location
7+75
20+80 | TERIALS AND IN Dia/type 18" CPP 18" CPP | ISTALLATION
Lineal ft.
35
35 | Rate
\$17.64
\$17.64 | \$617.40
\$617.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00 | TERIALS AND IN Dia/type 18" CPP 18" CPP 18" CPP | ISTALLATION
Lineal ft.
35
35
35 | Rate
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA'
Location
7+75
20+80
30+00
30+50 | TERIALS AND IN Dia/type 18" CPP 18" CPP 18" CPP 24" CPP* | ISTALLATION
Lineal ft.
35
35
35
40 | Rate
\$17.64
\$17.64
\$17.64
\$24.64 | \$617.40
\$617.40
\$617.40
\$985.60 | Location | Dia/type | Lineal ft. | Rate | | | CULVERT MA
Location
7+75
20+80
30+00
30+50
32+55 | TERIALS AND IN Dia/type 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* | ISTALLATION
Lineal ft.
35
35
35
40
40 | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30 | TERIALS AND IN Dia/type 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION
Lineal ft.
35
35
35
40
40
35 | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00 | TERIALS AND IN Dia/type 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION
Lineal ft.
35
35
35
40
40
40
35
30 | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20 | TERIALS AND IN Diatype 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP 18" CPP 18" CPP | ISTALLATION
Lineal ft.
35
35
35
40
40
35
30
40 | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00 | Dia/type 18" CPP 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP 18" CPP 18" CPP 18" CPP 18" CPP | ISTALLATION
Lineal ft.
35
35
35
40
40
40
35
30
40 | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64 |
\$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60
\$617.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25 | Dia/type 18" CPP 18" CPP 18" CPP 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP 18" CPP 18" CPP 18" CPP | ISTALLATION Lineal ft. 35 35 35 40 40 35 30 40 35 30 40 35 30 | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60
\$617.40
\$817.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25
136+40 | Dia/type 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION Lineal ft. 35 35 35 40 40 35 30 40 35 30 40 35 35 | Rate
\$17.64
\$17.64
\$17.64
\$22.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60
\$617.40
\$617.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25
136+40
0+00 | Dia/type 18" CPP | ISTALLATION Lineal ft. 35 35 35 40 40 35 30 40 35 35 35 35 35 30 40 35 35 | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60
\$617.40
\$817.40
\$617.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25
136+40
0+00
12+55 | Dia/type 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION Lineal ft. 35 35 35 40 40 35 30 40 35 30 40 35 35 30 35 35 35 35 | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60
\$617.40
\$617.40
\$617.40
\$617.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25
136+40
0+00
12+55
17+00 | Dia/type 18" CPP 18" CPP 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION Lineal ft. 35 35 35 35 40 40 35 30 40 35 30 40 35 35 30 40 35 35 35 35 35 | Rate
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$529.20
\$517.40
\$517.40
\$617.40
\$617.40
\$617.40
\$517.40
\$517.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25
136+40
0+00
12+55 | Dia/type 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION Lineal ft. 35 35 35 40 40 35 30 40 35 30 40 35 35 30 35 35 35 35 | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60
\$617.40
\$617.40
\$617.40
\$617.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA Location 7+75 20+80 30+00 30+50 32+55 33+30 38+00 44+20 48+00 78+25 136+40 0+00 12+55 17+00 | Dia/type 18" CPP 18" CPP 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION Lineal ft. 35 35 35 35 40 40 35 30 40 35 30 40 35 35 30 40 35 35 35 35 35 | Rate
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$529.20
\$517.40
\$517.40
\$617.40
\$617.40
\$617.40
\$517.40
\$517.40 | Location | Dia/type | Lineal ft. | Rate | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25
136+40
0+00
12+55
17+00 | Dia/type 18" CPP 18" CPP 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION Lineal ft. 35 35 35 35 40 40 35 30 40 35 30 40 35 35 30 40 35 35 35 35 35 | Rate
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60
\$617.40
\$617.40
\$617.40
\$617.40
\$517.40
\$529.20
\$529.20 | Location | | | | | | 2ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25
136+40
0+00
12+55
17+00 | Dia/type 18" CPP 18" CPP 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION Lineal ft. 35 35 35 35 35 40 40 35 30 40 35 30 30 30 30 | Rate
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$529.20
\$517.40
\$517.40
\$617.40
\$617.40
\$617.40
\$517.40
\$517.40 | Location | Dia/type Dia/type Quantity 54.00 | Lineal ft. Rate \$1.00 | Rate Cost \$54.00 | | | 2ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25
136+40
0+00
12+55
17+00 | Dia/type 18" CPP | ISTALLATION Lineal ft. 35 35 35 40 40 36 30 40 35 35 30 30 30 30 30 30 according to the second of th | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60
\$617.40
\$817.40
\$617.40
\$617.40
\$529.20
\$529.20 | | Quantity | Rate | Cost | | | ULVERT MA
Location
7+75
20+80
30+00
30+50
32+55
33+30
38+00
44+20
48+00
78+25
136+40
0+00
12+55
17+00 | TERIALS AND IN Dia/type 18" CPP 18" CPP 18" CPP 24" CPP* 30" CPP* 18" CPP | ISTALLATION Lineal ft. 35 35 35 40 40 36 30 40 35 35 30 30 30 30 30 30 according to the second of th | Rate
\$17.64
\$17.64
\$17.64
\$24.64
\$31.14
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64
\$17.64 | \$617.40
\$617.40
\$617.40
\$985.60
\$1,245.60
\$617.40
\$529.20
\$705.60
\$617.40
\$817.40
\$617.40
\$617.40
\$617.40
\$620.20
\$529.20
\$529.20 | | Quantity 54.00 | Rate
\$1.00 | Cost \$54.00 | | 11-12 17-18 19-110 | SURFACING | Subgrade prep: | ı | Description | | | | | Stations/
amount | × | Rate/
sta/amt | Cost | | |--|--|---|------------------|----------------------|---|-------------------------|--------------------|---------------------|---------------------------|---------------------|---------------|-------------------------| | | Babgiado prop. | Grade, Shape and Ditch | | | | | | 219.50 | x | \$17.80 | \$3,907.10 | | | | | Subgrade Compaction | | | | | | 219.50 | x | \$41.40 | \$9,087.30 | | | OAD SEGMENT | II to I2 | | | POINT TO | OCHAT | Sta to | Sea | 1 | | | | | | OAD GEGINEIS) | II WIZ | | Depth of | i1 to | | 140+ | 20 | TOTAL | Rate/ | Cost | • | | | pplication | Rock Size | | Rock | Volume | | Numi | | VOLUME | Sta./ | 004 | | | | ase Rock, Turnouts | and Type | Location | (inches)
N/A | pe
TO | F | of
TO's | | (CY)
76 | amt.
\$4,58 | \$348 | | | | · | 4"-0" Crushed | 5+60, 10+00, 65+70 | | | | | | | | | | | | ase Rock | 4"-0" Crushed | 30+50,32+55 | 9
N/A | Fill | 24
81 | Fills | 2 | 48
81 | \$4.58
\$4.58 | \$220
\$371 | | | | lase Rock
Subgrade Leveling | 4"-0" Crushed
1 1/2"-0" Crushed | Butress | N/A | | | | • | 540 | \$9.43 | \$5,092 | | | | urve Widening | 1 1/2"-0" Crushed | | | | | | | 360 | \$9.43 | | | | | urface Rock
urnouts | 1 1/2"-0" Crushed
1 1/2"-0" Crushed | | 3
N/A | station
TO | 16
10 | stations
TO's | 140.2
18 | 2,243
180 | \$9.43
\$9.43 | \$21,153
\$1,697 | | | | unctions | 1 1/2"-0" Crushed | | N/A | junction | 20 | junctions | 6 | 120 | \$9.43 | \$1,132 | | | | uivert Backfill | 1 1/2"-0" Crushed | 7+75,20+80, 33+30,38+65, | N/A | culvert | 30 | culverts | 4.00 | 120 | \$9.43 | \$1,132 | | | | ulvert Bedding/Backfill | 1 1/2"-0" Crushed | 30+00,32+55 | N/A | culvert | 30 | culverts | 2.00 | 60 | \$9.43 | \$566 | | | | ulvert Backfill | 1 1/2"-0" Crushed | 44+20,48+00, | | | | | | | | | | | | issipator | 1 1/2 -0 01431164 | 78+25,136+40
30+00,32+55,30+50,32+55 | N/A | culvert | 30 | culverts | 4.00 | 120 | \$9.43 | \$1,132 | | | | issipatoi | 6"-24" Rip Rap | , 44+20,61+70, | | | | | | | | | | | | | 0 -24 Kip Kap | 75+50,78+25,
84+10,126+50,136+40 | N/A | diss | 12 | dissipator | 11 | 132 | \$8.79 | \$1,160 | | | | otal Rock for Road Segn | nent: | 04110,120130,130140 | 11 to 12 | <u> </u> | 12 | dissipator | | 4,080 | ψ0.70 | \$1,1001 | \$34,003 | | | OAD SEGMENT | 13 to 14 | ı | D* | POINT TO | *************************************** | | Sta. | 7 | E-1 · | | | | | | Rock Size | | Depth of
Rock | l3 to
Volume | | 10+0
Numi | | TOTAL
VOLUME | Ratel
Stal | Cost | | | | pplication | and Type | Location | (inches) | pe | | of | | (CY) | amt | | | | | ubgrade
Leveling | 4"-0" Crushed | | N/A | | 90 | | 40.0 | 44 | \$4.58 | \$202 | | | | urface Rock
urnouts | 4"-0" Crushed
4"-0" Crushed | 7+15 | 6 | station
TO | 33
24 | stations
TO's | 10.0
2 | 330
48 | \$4,58
\$4.58 | \$1,511
\$220 | | | | unctions | 4"-0" Crushed | 0+00, 4+00 | 6 | junction | 24 | junctions | 2 | 48 | \$4,58 | \$220 | | | | unctions
otal Rock for Road Segn | 3/4"-0" Crushed | 0+00 | N/A
13 to 14 | junction | 20 | junctions | 1 | 20
490 | \$9.43 | \$189 | \$2,341 | | | OAD SEGMENT | 15 to 16 | | 13 10 14 | POINT TO | POINT | Sta. to | Sta. | 430 | | | \$2,54 I | | | | | | Depth of | 15 to | | 36+ | | TOTAL | Rate/ | Cost | | | | pplication | Rock Size
and Type | Location | Rock (inches) | Volume
pe | | Num
of | | VOLUME
(CY) | Sta.i
amt. | | | | | ubgrade Leveling | 4"-0" Crushed | Location | N/A | ps. | | | | 168 | \$4.58 | \$769 | | | | urve Widening | 4"-0" Crushed | | 6 | | | | | 108 | \$4.58 | \$495 | | | | urface Rock | 4"-0" Crushed | 0.50 00.00 0 00.00 05.0 | 6 | station | 33
11 | stations | 36.4
7.5 | 1,201 | \$4.58
\$9.43 | \$5,501
\$778 | | | | raction Rock
rench Backfill | 3/4"-0" Crushed
4"-0" Crushed | 6+50-20+00 & 22+00-26+0
19+70 | N/A | station | - 11 | stations | 1.5 | 83
36 | \$4.58 | \$165 | | | | urnouts | 4"-0" Crushed | 10-10 | 6 | ТО | 24 | TO's | 4 | 96 | \$4.58 | \$440 | | | | rurnarounds | 4"-0" Crushed
4"-0" Crushed | | N/A
6 | TA
junction | 12
24 | TA's junctions | 1 | 24 | \$4.58
\$4.58 | \$110
\$110 | | | | unctions
otal Rock for Road Segn | | 1 | 15 to 16 | junouon | 27 | | | 1,740 | Ψ4.50 | 9,10 | \$8,368 | | | OAD SEGMENT | 17 to 18 | 1 | - | POINT TO | | Sta. to | | | _ | | | | | | Rock Size | | Depth of
Rock | I7 to
Volume | | 2+0
Num | | TOTAL
VOLUME | Rate/
Sta./ | Cost | | | | application | and Type | Location | (inches) | pe | | Ŏ1 | | (CY) | amt | | | | | Surface Rock | 4"-0" Crushed | | 6 | station | 33 | stations | 2.0 | 66 | \$4.58 | \$302 | | | | unctions
unctions | 4"-0" Crushed
3/4"-0" Crushed | 0+00 | 6
N/A | junction
junction | 24
20 | junctions
junctions | 1 | 24 | \$4.58
\$9.43 | \$110
\$189 | | | | Culvert Bedding/Backfill | 3/4"-0" Crushed | D+00 | N/A | culvert | 30 | culverts | 1 | 30 | \$9.43 | \$283 | | | | anding | 6"-0" Pitrun | 18 | NT 4 - 10 | landing | 80 | landing | 1 | 80 | \$5.34 | \$427 | 64.044 | | | otal Rock for Road Segr
OAD SEGMENT | ment:
 9 to 110 | | 17 to 18 | POINT TO | POINT | Sta. to | Sta | 220
1 | | | \$1,311 | | | | | | Depth of | 19 to | 110 | 30+ | 90 | TOTAL | Rate/ | Cost | | | | pplication | Rock Size | Landies | Rock | Volume | | Num
of | | YOLUME | Sta.i | | | | | Subgrade Leveling | and Type
4"-0" Crushed | Location | (inches)
N/A | pe | | OI | | (CY)
202 | 2mt.
\$4.58 | \$925 | | | | Surface Rock | 4"-0" Crushed | | 6 | station | 33 | stations | 30.9 | 1,020 | \$4.58 | \$4,670 | | | | uivert Bedding/Backfill | 3/4"-0" Crushed | 12+55, 17+00, 18+65 | N/A | culvert | 30 | culverts | 3.00 | 90 | \$9.43 | \$849 | | | | urnouts
unctions | 4"-0" Crushed
4"-0" Crushed | | N/A
N/A | junction | 24
24 | TO's
junctions | 4 | 96 | \$4.58
\$4.58 | \$440
\$110 | | | | unctions | 3/4"-0" Crushed | 0+00 | N/A | junction | 20 | junctions | 1 | 20 | \$9.43 | \$189 | | | | issipator
otal Rock for Road Segr | 6"-24" Rip Rap | 12+55, 17+00, 18+65 | N/A
I9 to I10 | diss | 12 | dissipator | 3 | 1,488 | \$8.79 | \$316 | \$7,499 | | | oral Rock for Road Segr | HALL | | 10 110 | | | | | 1,400 | | | \$1,438 | | | | | | | Description | | | | | No.sta | Rate/sta | Cost | | | | | Processing: | 141 : - | | | | | | 219.50 | \$41.40 | \$9,087 | | | | | Processing: | Water, Pro | cess & Com | pact | | | | | | | | | | | Processing: | Water, Pro | ocess & Com | | | y | | | | | | | | SUB TOTAL FOR C | - | Water, Pro | 24-6" Rr | 6'-0"pr | | | 3/4"-0"
263 | Total
8 018 | 8.018 | | 67 5 | | | SUB TOTAL FOR S | URFACING | Water, Pro | ocess & Com | | 4"-0"
3,764 | 1 1/2"-0"
3,743 | 3/4"-40"
263 | Total
8,018 | 8,018 | | \$75, | | | SUB TOTAL FOR S | URFACING | Water, Pro | 24-6" Rr
168 | 6"-0" pr
80 | 3,764 | | | 8,018 | 8,018 | | \$75, | | | | URFACING | Water, Pro | 24-6" Rr
168 | 6%0"pr
80 | 3,764 | 3,743 | | | 8,018 | | \$75, | | | | URFACING | Water, Pro | 24-6" Rr
168 | 6'-0"br
80
escription | 3,764
1 @ 38.52 on l | 3,743 | | 8,018
Cost | 8,018 | | \$75, | | | SPECIAL PROJECT | URFACING
TS | Water, Pro | 24-6 Rr
168 | 6'-0"br
80
escription | 3,764
1 @ 38.52 on l | 3,743 | | 8,018
Cost | 8,018 | | | | | SPECIAL PROJECT | URFACING | Water, Pro | 24-6 Rr
168 | 6'-0"br
80
escription | 3,764
1 @ 38.52 on l | 3,743 | | 8,018
Cost
\$15,126 | 8,018 | Spec. Proj. | \$75,
\$15,
\$90, | | | SPECIAL PROJECT | URFACING
TS | Water, Pro | 24-6 Rr
168 | 6'-0"br
80
escription | 3,764
1 @ 38.52 on l | 3,743 | | 8,018 Cost \$15,126 | - | | \$15, | GRAND TOTAL Compiled By: SURFACING John Tillotson Date: <u>02/27/2008</u> Sale Name: Progeny Split Prepared by: d.mellison Project: No. 2 (Road Segment 11-I2 station 38+52 - 38+85) Project Type: Buttressing Date: 01/23/08 ### Phase I: Mobilization (Special to Buttress) | Qty. | Equipment or Activity | Rate | Hours | Cost (\$) | |------|-------------------------------|---------|-------|------------| | 2 | C330 Excavator | \$1,200 | | \$2,400.00 | | 1 | Off Highway Dump Truck | \$661 | | \$661.00 | | | Rubber Tired Skidder | \$85 | 1 | \$85.00 | | 1 | Powder Truck/Explosives/labor | \$327 | | \$327.00 | | 1 | Cat D8 | \$1,200 | | \$1,200.00 | | | | | | \$4,673.00 | ### Phase II: Development and Staging of Riprap | Qty. | Equipment or activity | Qty (Cy) | (\$/Cy) | Hours | (\$/Hr) | Cost (\$) | |------|--|----------|---------|-------|----------|------------| | | C330 Excavator | | | 2 | \$138.00 | \$276.00 | | | Drilling and Shooting (60"-48" Riprap) | 183 | | 4 | \$258.00 | \$1,032.00 | | | Drilling and Shooting (36"-12" Riprap) | 68 | | 1.5 | \$258.00 | \$387.00 | | | Staging (60"-48" Riprap) | 183 | \$3.41 | | | \$624.03 | | | Haul and dump (36"-12" Riprap) | 68 | \$2.91 | | | \$197.88 | | L | l in internal control of the | | | | | \$2,516.91 | ### Phase III: Site Preparation | Qty. | Equipment or Activity | Unit | (\$/unit) | Hours | (\$/Hr) | Cost (\$) | |-----------|--|------|-----------|-------|----------|------------| | <u> </u> | Remove existing culvert @ Sta. 38+65 | | | | | | | .,,,,,,,, | C330 Excavator | | | 1 | \$138.00 | \$138.00 | | | Excavate access ramp and buttress site | | | | | | | 167 | Material to be endhauled to waste area | bcy | \$4.02 | | | \$671.34 | | 713 | Material to be staged for road prism use | bcy | \$1.51 | | | \$1,076.63 | | 20 | Straw bales stream edge | bale | \$10.00 | | | \$200.00 | | | Labor to place and deliver bales | | | 8 | \$37.00 | \$296.00 | | | Remove onsite Alder trees (C330 Excavator) | | | 1 | \$138.00 | \$138.00 | | | | | | | | \$2,519.97 | ### **Phase IV: Buttress Construction** | Qty. | Equipment or Activity | Qty (Cy) | (\$/Cy) | Hours | (\$/Hr) | Cost (\$) | |------|--|----------|---------|-------|----------|------------| | | Placing (60"-48") Riprap material (C330 Exc) | 183 | • | 20 | \$138.00 | \$2,760.00 | | | Placing (36"-12") Riprap material | 68 | | 4 | \$138.00 | \$552.00 | | Luna | <u> </u> | | | | | \$3,312.00 | ### Phase V: Repair Road Prism | Qty. | Equipment or Activity | Unit | (\$/Unit) | Hours | (\$/Hr) | Cost (\$) | |------|--------------------------------------|------|-----------|-------|----------|------------| | 713 | Place material staged for road prism | bcy | \$1.51 | | | \$1,076.63 | | 713 | Compact placed material | bcy | \$0.60 | | |
\$427.80 | | | Cat D8 (Ditchline construction) | | | 1 | \$132.00 | \$132.00 | | | 1 | | | | | \$1,636.43 | ### Phase VI: Miscellaneous | Qty. | Equipment or Activity | Unit | (\$/Unit) | Hours | (\$/Hr) | Cost (\$) | |------|--------------------------------------|-------|------------|-------|----------|-----------| | 167 | Compact Waste Area | су | \$0.30 | | | \$50.10 | | 0.1 | Seed and mulch waste area | acres | \$1,532.00 | | | \$153.20 | | | Winterize Fall Creek quarry (Cat D8) | | | 2 | \$132.00 | \$264.00 | | *** | | | | | | \$467.30 | ### CRUSHED ROCK COST SALE NAME: _ Progeny Split No. 1 and 2 DATE: _ 02/25/2008 ROCK TYPE: 1 1/2"-0" Crushed PROJECT: BY: John Tillotson 3/4"-0" Crushed QUARRY: Hamlet | UMRK1. | | паппес | | | | | 3/4 -0 CIU | 31100 | | | | | |---|--------------------|------------------|----|-----|----|-----|------------|------------|--------|--------|---------|----------------| | Road | Stations | Cubic | | | | | | AY HAUL IN | | | | Total | | Segment | Stations | Yards | 50 | MPH | 30 | MPH | 25 MPH | 20 MPH | 15 MPH | 10 MPH | 5 MPH | Haul | | 4A to 4B | | 20 | | - | | | 1.09 | 1.75 | 2.12 | 1.37 | 0.18 | 6.51 | | 4C to 4D | | 20 | | | | | 1.09 | 1.75 | 2.32 | 1.41 | 0.18 | 6.75 | | 4E to 4F | | 20 | | | | | 1.09 | 1.75 | 2.32 | 1.47 | 0.18 | 6.81 | | 4K | | 20 | | | | | 1.09 | 1.75 | 1.97 | 1.47 | 0.18 | 6.46 | | 5C | | 20 | | | | | 1.09 | 2.18 | 3.09 | 0.85 | 0.13 | 7.34 | | | | | | | | | | | | | · = 111 | | | *************************************** | | | | | | | | | | | | | | I1 to I2 | 140.20 | 3,743 | | | | | 1.09 | 1.75 | 1.32 | 0.74 | 1.51 | 6.41 | | 13 to 14 | 10.00 | 20 | | | | | 1.09 | 1.75 | 2.11 | 1.43 | 0.27 | 6.65 | | 15 to 16 | 36.40 | 83 | | | | | 1.09 | 1.75 | 2.21 | 2.11 | 0.28 | 7.44 | | 17 to 18 | 2.00 | 50 | | | | | 1.09 | 1.75 | 2.21 | 2.23 | 0.18 | 7.46 | | 19 to 110 | 30.90 | 110 | | | | | 1.09 | 1.75 | 2.21 | 1.95 | 0.28 | 7.28 | | | | | | | | | | | | | | | | ********* | - | | | | | | | | | | | | | | | | OTAL | 219.50
STA./NO. | 4,106
CU. YD. | | | | | | | , | | | AVERAC
HAUL | | UBIC YARD | WEIGHTED | | | | | | 1.09 | 1.75 | 1.40 | 0.84 | 1.40 | 6.48 | | | | | | | | | | verage Rou | | | 12.95 | | ### ROCK HAUL: | Truck type: | D20 | No. trucks: | 4 | | | |-------------|-----|-------------|-----|----------------------|-----| | Delay min.: | 8 | Efficiency: | 85% | Ave haul: \$8.03 | /cy | | | | | | Load: \$0.50 | /cy | | Truck type: | D12 | No. trucks: | 6 | Spread: \$0.90 | /cy | | Delay min.: | 6 | Efficiency: | 85% | | | | Truck type: | D10 | No. trucks: | | Production: cy/day = | 810 | | Delay min.: | 5 | Efficiency: | 85% | , | | CRUSHED ROCK HAUL COSTS 4,106 cy @ \$9.43 /cy ### CRUSHED ROCK COST SALE NAME: Progeny Split DATE: 01/18/2008 PROJECT: No. 1 and 2 ROCK TYPE: 4"-0" Crushed BY: Tillotson QUARRY: Cole Mtn. | Segment | Road | T | Cubic | ı | | | | ONE W | AV HALL 1 | N MILEO | | | Total | |--|-------------|--|-------|--|-------|----|-------|---|-----------|------------|-----------|--------|----------------| | 1A to 1B | | Stations | | ا در | MOUL | 20 | 84DUI | | | | І 40 меці | E MDU | | | 1C to 1D | Segment | | Talus | 50 | IVIFI | 30 | IVIFI | 20 MIFT | ZU IVIPT | I IS WIFFI | וארוען ענ | 3 MILU | Паш | | 1C to 1D | 1A to 1B | 17.70 | 991 | | | | | 0.39 | | 1.57 | 0.56 | 0.29 | 2.81 | | TOTAL 277.85 7,129 13.34 1.73 0.75 0.23 3.10 1.73 0.75 0.23 3.10 1.73 0.75 0.23 3.10 1.73 0.75 0.23 3.10 1.73 0.75 0.23 3.10 1.73 0.75 0.23 3.10 1.73 0.75 0.23 3.10 1.73 0.75 0.23 3.10 1.73 0.75 0.26 0.20 0.28 1.75 0.29 1.75 0.28 1.75 0.29 1.75 0.16 1.59 0.76 0.14 2.8 1.59 1.59 0.77 0.16 2.91 1.59 0.77 0.16 2.91 1.59 0.77 0.16 2.91 1.59 0.77 0.16 2.91 1.59 1.30 0.16 3.23 1.59 1.59 1.30 0.16 3.23 1.59 1.59 1.30 0.16 3.23 1.59 1.59 1.30 0.16 3.23 1.59 1.59 1.30 0.16 3.24 1.59 1.59 1.30 1.59 1.59 1.30 0.16 3.24 1.59 1.59 1.59 1.30 0.16 3.24 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 | | | 450 | | | | | 0.39 | | | | 0.20 | 3.07 | | ## At to 4B | | | 626 | | | | 1 | | | 1.73 | 0.75 | 0.23 | 3.10 | | 4C to 4D 1.80 112 0.39 1.59 0.76 0.14 2.86 4E to 4F 3.00 171 0.39 1.59 0.77 0.16 2.91 4G to 4H 1.50 98 0.39 1.59 1.30 0.16 3.24 4L 12 0.39 1.69 1.21 0.12 3.44 5A to 5B 2.20 147 0.39 1.69 1.52 0.17 3.77 11 to 12 140.20 205 0.42 3.48 0.75 1.32 0.13 6.10 13 to 14 10.00 470 0.39 1.69 0.56 0.21 2.86 15 to 16 36.40 1,657 0.39 1.69 0.99 0.46 3.50 17 to 18 2.00 90 0.39 1.69 0.99 0.41 3.56 19 to 110 30.90 1,342 0.39 1.69 0.99 0.41 3.48 TOTAL 277.85 7,129 7,129 AVERJ | | 8.50 | 501 | | | | Ì | 0.39 | | 1.67 | 0.56 | 0.20 | 2.82 | | 4G to 4H 1.50 98 0.39 1.59 1.10 0.15 4I to 4J 4.50 257 0.39 1.59 1.30 0.16 3.44 4L 12 0.39 1.69 1.21 0.12 5A to 5B 2.20 147 0.39 1.69 1.52 0.17 11 to 12 140.20 205 0.42 3.48 0.75 1.32 0.13 13 to 14 10.00 470 0.39 1.69 0.56 0.21 15 to 16 36.40 1,657 0.39 1.69 0.99 0.46 17 to 18 2.00 90 0.39 1.69 0.99 0.41 19 to 110 30.90 1,342 0.39 1.69 0.99 0.41 3.48 | | | 112 | | | | i | 0.39 | | 1.59 | 0.76 | 0.14 | 2.88 | | 4I to 4J 4.50 257 0.39 1.59 1.30 0.16 3.44 4L 12 0.39 1.69 1.21 0.12 3.47 5A to 5B 2.20 147 0.39 1.69 1.52 0.17 3.77 11 to 12 140.20 205 0.42 3.48 0.75 1.32 0.13 6.10 13 to 14 10.00 470 0.39 1.69 0.56 0.21 2.86 15 to 16 36.40 1,657 0.39 1.69 0.99 0.46 3.56 17 to 18 2.00 90 0.39 1.69 0.99 0.41 3.46 19 to 110 30.90 1,342 0.39 1.69 0.99 0.41 3.46 10 <td< td=""><td>4E to 4F</td><td>3.00</td><td>171</td><td></td><td></td><td></td><td></td><td>0.39</td><td></td><td>1.59</td><td>0.77</td><td>0.16</td><td>2.91</td></td<> | 4E to 4F | 3.00 | 171 | | | | | 0.39 | | 1.59 | 0.77 | 0.16 | 2.91 | | 4L 12 0.39 1.69 1.21 0.12 3.44 5.4 to 5B 2.20 147 0.39 1.69 1.52 0.17 1.52 0.17 1.52 0.17 1.52 0.17 1.52 0.17 1.52 0.17 1.52 0.18 0.56 0.21 0.39 1.69 0.99 0.46 0.31 1.69 0.99 0.46 0.39 1.69 0.99 0.46 0.39 1.69 0.99 0.41 0.56 0.14 0.56 0.14 0.56 0.39 0.39 1.69 0.99 0.41 0.56 0.14 0.56 0.39 0.39 0.56 0.41 0.56 0.41 0.56 0.41 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 | 4G to 4H | 1.50 | | | | | | 0.39 | | | | 0.15 | 3.23 | | 5A to 5B | 4l to 4J | 4.50 | 257 | | | | | 0.39 | | 1.59 | 1.30 | 0.16 | 3.44 | | 11 to 2 | 4L | | 12 | 1 | | | | 0.39 | | 1.69 | 1.21 | 0.12 | 3.41 | | 11 to 2 | | | | , | | | | | | | | | | | 13 to 14 | 5A to 5B | 2.20 | 147 | | | | | 0.39 | | 1.69 | 1.52 | 0.17 | 3.77 | | 13 to 14 | 14 5- 10 | 440.00 | 205 | | | | | 0.40 | 2.40 | 0.75 | 4 22 | 0.42 | 640 | | 15 to 16 | | | | | | | | | 3.40 | 1 | | | | | 17 to 18 | | | | <u> </u> | | | | | | <u> </u> | | | - | | 19 to 110 30.90 1,342 0.39 1.69 0.99 0.41 3.48 | | | | | | | | | | | | | | | TOTAL 277.85 7,129 | | | | | | | | | | | | | | | | 19 10 110 | 30.90 | 1,342 | | | | | 0.39 | | 1.09 | 0.99 | 0.41 | 3.40 | | | • | | | | | | | | | + | | | 4 | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | 1 | | | | - | | | 1 | | | *************************************** | | 1 | | | 1 | | | | <u> </u> | | | | | | | | | | | 1 | | | | | | | | | | - | | | | | 1 | | | | | | <u> </u> | | | | <u></u> | | | | | 1 | | | | | | | | | | | | | <u> </u> | | 1 | | | | | | 1 | | | | | | | | | 1 | | | | | | | | | | | | | | | 1 | | | | | | i | | | | | | | | | 1 | | | | - | | | | | | | | | | | 1 | | | | | | | | | | | | İ | | | 1 | | | | | | T | | | | | | | | | 1 | | | | | | | | | | | | | | |] | | | | | T 405 | | | | | | | | | | 43 (mem a C m) | | | TOTAL | | | 4 | | | | | | | | | AVERAGE | | | 011010 7455 | | | | | | | | 0.40 | 1 4 64 | ا مم | 0.04 | HAUL | | CUBIC YARD WEIGHTED HAUL 0.39 0.10 1.64 0.86 0.31 3.3° Average Round Trip Distance (miles) 6.61 | CUBIC YARD | WEIGHTEL | HAUL | <u> </u> | | | | | | | | | 3.31 | ### **ROCK HAUL:** | Truck type: | D20 | No. trucks: | 4 | | | |-------------|-----|-------------|-----|---------------------------|------------| | Delay min.: | 8 | Efficiency: | 85% | Ave haul: \$4.13
Load: | /cy
/cy | | Truck type: | D12 | No. trucks: | 6 | Spread: \$0.45 | /cy | | Delay
min.: | 6 | Efficiency: | 85% | • | | | Truck type: | D10 | No. trucks: | | Production: cy/day = | 1,575 | | Delay min.: | 5 | Efficiency: | 85% | - | | CRUSHED ROCK HAUL COSTS 7,129 cy @ \$4.58 /cy ### RIP RAP ROCK COST | SALE NAME: | F | Progeny Sp | lit | | _ | 001/7 | | | | ı | DATE:
BY: | | 01/18 | /2008 | |---------------------|----------|------------|--------------|-----|----|-------|--------|---------------------------------------|---------------|--|--------------|-----|-------|---------| | PROJECT:
QUARRY: | | Fall Creek | | | К | OCK I | YPE: F | Rip Rap | - | | BY: | | Lillo | tson | | Road | Ctations | Cubic | | | | | ONE W | AY HAUL II | N MILES | | | | | Total | | Segment | Stations | Yards | 50 | MPH | 30 | MPH | 25 MPH | | | 10 | MPH | 5 | MPH | | | | | | <u> </u> | | | | | | ļ | | <u> </u> |] | | 14.4- 10 | 440.00 | 400 | | | | | | | | <u> </u> | | | | | | I1 to I2 | 140.20 | 132 | | | | | | | | 1 0 | .50 | . 0 | .50 | 1.00 | | | | | | | | | | | | ╁── | | | | 1 | | I9 to I10 | 30.90 | 36 | | | | | | | 3.56 | 1 | .88 | 0 | .25 | 5.69 | | | | | | | | | | | | | | | |] | | | | | | | | | | | | | | | | ļ | | | | | | 1 | ļ | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | ***** | 1 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | |] | | | | | | | | | | | ļ | ļ | | | | ļ | | | | , | | | | | | | | \vdash | | | | 1 | | | | | | | | | | | | \vdash | | | | | | | | | | | | | | | | | **** | | |] | | | | | ļ | | | | | - | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | 1 | | | | | | | | _ | | | | | | TOTAL | 171.10 | 168 | 1 | | | | | | | | | | | AVERAGE | | | STA./NO. | | 1 | | | | | | | | | | | HAUL. | | CUBIC YARD | WEIGHTED | HAUL | | | | | | | 0.76 | | .80 | | .45 | 2.01 | | | | | | | | | A | verage Rou | ınd Trip Dist | ance (| miles) | 4 | .01 | | ### ROCK HAUL: | Truck type: | D12 | No. trucks: | 1 | | | | |-------------|-----|-----------------|-----|------------|--------|-----| | Delay min.: | 6 | Efficiency: | 85% | Ave haul: | \$3.75 | /cy | | | | | | Load: | \$5.04 | /cy | | Truck type: | D10 | _ No. trucks: _ | | Develop: _ | | /cy | | Delay min.: | 5 | Efficiency: | 85% | <u>-</u> | | | Production: cy/day = 155 RIP RAP ROCK HAUL COSTS 168 cy @ \$8.79 /cy ### RIP RAP ROCK COST | SALE NAME:
PROJECT: | | Progeny Sp | lit | | D | 00K T | YPE: | Din Da | | | | D. | | | 01/18
Tillo | | |------------------------|-------------|------------|--|--------|------|-------|--------|----------|--------|-----------|----------|--|----------|----|---|--------------| | QUARRY: | | Fall Creek | | | | OOK I | 1 F L. | Kip Ka | .p | | | | ъ,. | | 11110 | 19011 | | | | | | **** | | | | | | | | | | | | • | | Road | Stations | Cubic | | | ۱ ۵۵ | | | | | MILES | nul. | 40 | s and al | _ | | Total | | Segment | | Yards | 50 | MPH | 30 | MPH | 25 MP | H 20 | MPH | 15 MI | PH | 10 | MPH | | MPH | Haul | | | | | | | | | | | | | | | | | | | | | | | | | | | | + | | | \dashv | | | | | | | | | | | | | | | 1 | | | 7 | | | | | | | | | | | | | | | 1 | | | | | | · | I1 to I2 | 140.20 | 120 | | | | | | <u> </u> | | | _ | 0.5 | 50 | 0. | .50 | 1.00 | | | | | <u> </u> | | | | | | | | | ······································ | | | | | | . 19 to 110 | 30.90 | 36 | | | | | | + | | 3.56 | + | 1.8 | 20 | Δ. | .25 | 5.69 | | .19 (0 1 10 | 30.50 | 30 | | | | | | + | | 3.00 | \dashv | 1.0 | 00 | U. | .20 | 5.09 | | | | | | | | | | + | | | $\neg +$ | | | | | | | | | | | | | | | 1 | | | 7 | _ | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | +- | | | + | | | | | | | | | | | | | | | 1- | | | \dashv | | | | | | | | | | | | | | | 1 | | | _ | | | | | | | | | | | | | | | + | | | 十 | | | | | | | | | | | | | | | | | | 寸 | *************************************** | | | | | | | | | | | | | | \dashv | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | + | | | \dashv | | | | | | | | | | | | | | | - | | | \dashv | | | | | | | | | | <u> </u> | | | | | + | | | + | | | | | | | | | | | | | | | + - | | | \dashv | - | | | | | | | | | <u> </u> | | | | | 1 | | | \dashv | <u> </u> | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | TOTAL | 171.10 | 156 | - | | | | | - | | | | | | | | AVERAGE | | CUBIC YARD | STA./NO. | LO. YD. | 1 | | | | | | | 0.82 | | 0.8 | 22 | _ | .44 | HAUL
2.08 | | CODIC TARD | VVEIGHTEL | INAUL | <u> </u> | | L | i | | Averag | e Rou | nd Trip D | listar | | | | .16 | 2.00 | | | | | | | | | | Averag | C 1100 | na mp b | 13(61 | 1100 (11 | illicoj | | . 10 | | | ROCK HAUL: | Truck type: | | | rucks: | | 1 | | | | | | | | | | | | | Delay min.: | 6 | Effic | iency: | 8 | 5% | | | | | \$3.8 | | /cy | | | | | | | 540 | NI - 1 | | | | | | | | \$5.0 | | /cy | | | | | | Truck type: | | | rucks: | - 01 | 50/ | | | Dev | elop: | | | /cy | | | | | | Delay min.: | 5 | ⊏⊞C | iency: | Q: | 5% | | | | | | | | | | | Production: cy/day = 152 RIP RAP ROCK HAUL COSTS 156 cy @ \$8.87 /cy | PR | ROJECT NO. | | | | nber Sale Name: <u>Prog</u> | | | | | |-------------|-----------------------|------------------|------------|-------------|-----------------------------|---------------|--------------|---------|------------------| | Quarry: | Cole Mounta | | | | Swel | _ | 1001 | | | | | | 1/4, Sec. 14, T4 | N, R9W, W. | M | Shrin | 1k: _ | 16% | | | | County: | Clatsop | | | | | ** | | | , | | By: | S. Bushnell | | | | Loading | g Hopper: _ | Yes | | | | Date: | 02/26/2008 | | | | _ | | | | | | | | | | | GTAGIZBII E | an) | | | TOTAL | | | DOOK GIZE | DDIEGT | OD ADATIO | NN T | STOCKPILE | 1. | RUCK MEAS | | TOTAL | | | ROCK SIZE | E REJECT | GRADATIO | JN | CU. YDS. | | CU. YDS. | | CU. YDS. | | | 3/4"-0" | | CR | • | | - | | _ | | | | 1-1/2"-0" | 400/ | CR | • | | - | 7 400 | _ | 12.020 | | | <u>4"-0"</u>
6"-0" | 10% | CR | | 5,000 | - | 7,128
920 | _ | 12,928
920 | | | 24"-6" | | PR
RR | • | | - | 100 | | 100 | | | 36" | | RR | • | | - | 100 | _ | 100 | | | | | KK | i | | - | | _ | | | | TOTAL CU | UBIC YARDS | OF ROCK: | | 5,000 | | 8,148 | | 13,948 | | 1) MOB | ILIZATION | & SET UP: | | | | | | | | | EQUIPM | ENT | QUANTITY | RATE | COST | EQUIPMENT | I | QUANTITY | RATE | COST | | 2 Stage C | | 1 | \$2,027 | \$2,027 | Excavator | | 1 | \$1,200 | \$1,200 | | Screening | | 1 | \$515 | \$515 | Loading Hopper | | 1 | \$515 | \$1,200
\$515 | | D8 Cat | j 1 10111 | 1 | \$1,200 | \$1,200 | | | 1 | 4515 | 4 313 | | D6 Cat | | 1 | \$664 | \$664 | | | | | | | Loader | | 1 | \$688 | \$688 | | | | | | | Drill and C | Compressor | 1 | \$1,180 | \$1,180 | | | | | | | Powder | | 1 | \$327 | \$327 | | | | | | | Dump Tru | ıcks | 2 | \$137 | \$274 | | | | | | | | | L FOR MOBIL | | | " | <u> </u> | • | • | \$8,590 | | | | | | | | | | | | | | EQUIPMEN | NT SET UP | | | TIMES | | RATE | COST | | | | 2 Stage Cru | sher | | | 1 | | \$2,027 | \$2,027 | | | | Screening P | lant | | | 11 | | \$273 | \$273 | | | | Loading Hop | oper | | | <u> </u> | | \$273 | \$273 | | | | Original Cali | ibration | | | 1 | | \$507 | \$507 | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | _ | | | | | | | | | | | | | | | • | | | | SUB TOTA | L FOR SET UI | P COSTS | | | | | \$3,080 | | | | TOTAL M | OBILIZATIO | N & SET II | P COSTS | | | | | \$ 11,670 | | | | | | | **** | | | | ~~,··· | | 2) CLEA | ARING & GI | | | | OT LANDSTOWN I | range I | DATE I | COST | | | | DESCRIPT | | A | | _ ` | UNIT | RATE | COST | | | | | Haul to Waste | | • | 2.0 | hr | \$211 | \$422 | | | | Stasti and S | tumps (1 truck, | i exc.) | | | | | | | | | | | | - | | | | | | | | | | | • | - | | | | | | | • | | | - | | | | | | | | | | | - | | | | | | | | | | | - | | <u></u> | | | | | | TOTAL CI | LEARING & O | GRUBBING | COSTS | | | | | \$422 | | | | | | | | | | | • | DETTEL OBTENCE AND OBTICITING COCTO | 1,900 boy \$1,80 \$3,420 | | DESCRIPTION | | | QUANTITY | UNIT | RATE | COST | |
--|--------------|---------------------------------------|-----------|--|--|--|--------------|---|----| | No. STEST COST | | · · · · · · · · · · · · · · · · · · · | | <u>) </u> | | bcy | | , | | | METHOD | | | ite, load | <u>.</u> | 1,000 | bcy | \$3.40 | \$3,400 | | | No. Street Stre | haul, spread |) | | _ | | | | | | | No. Street Stre | | | | | | | | | | | No. Street Stre | | umann | | _ | | | | | | | No. Street Stre | | | | _ | | | | | | | No. Street Stre | | | | | | <u> </u> | | | | | METHOD | TOTAL EX | CAVATION C | OSTS | | | | | ······································ | 5 | | ROCK SUMMARY Type | ELOP ROCK | | | | | | | | | | Type | | | | METHOD | % | QUANTITY | RATE | COST | | | Crushed 12,928 93% Drill & shoot 50% 7,620 \$2.30 \$17,527 pit run 920 7% Oversize red 5% 692 \$5.80 \$4,016 Total 13,948 reject 1,293 9.3% TOTAL ROCK DEVELOPMENT COSTS \$5.80 LIBRATION & TESTING DESCRIPTION NO, \$/TEST COST Calibrate 7 \$57.30 \$401 Test 7 \$57.30 \$401 Test 7 \$57.30 \$401 Total Calibrate 7 \$57.30 \$401 Test 7 \$57.30 \$401 Total Calibrate 7 \$57.30 DESCRIPTION QUANTITY CU. YD. COST Dig & Feed Rock 14,221 \$0.68 \$9,650 TOTAL FEEDING & LOADING COSTS TOTAL FEEDING & LOADING COSTS | | | | <u> </u> | | | | | | | pit run y20 | | | | | | | | | | | Total 13,948 reject 1,293 9,3% TOTAL ROCK DEVELOPMENT COSTS \$. | | | | | | | | | | | Total | - | 1 | | 3 | 5% | 692 | \$5.80 | \$4,016 | | | TOTAL ROCK DEVELOPMENT COSTS S | | | 1% | Other | | <u> </u> | | ····· | | | TOTAL ROCK DEVELOPMENT COSTS S. | | | 0.007 | | | | | | | | DESCRIPTION | - | | | COCTC | | | | | e. | | DESCRIPTION | TOTAL NO | CK DE VELOI | IVILETY | COSIS | | | | *************************************** | φ | | DESCRIPTION | JERATION & | TESTING | | | | | | | | | Calibrate | | | | | | NO. | \$/TEST | COST | | | Calibrate Test 7 | | <u> </u> | | | · | 210. | <u> </u> | | | | Test | | | | | | | | | | | TOTAL CALIBRATION & TESTING COSTS | | | | | | 7 | \$57.30 | \$401 | | | CU. YD. COST TOTAL | | | | | | | | | | | CU. YD. COST TOTAL | | | | | | | | | | | CU. YD. COST TOTAL | | | | _ | | | | | | | CU. YD. COST TOTAL | • | | | _ | | | | | | | CU. YD. COST TOTAL | TOTAL CA | LIBRATION & | & TEST | NG COSTS | | | | | | | CU. YD. COST TOTAL | | | | | | | | | | | DESCRIPTION QUANTITY CU. YD. COST | DING & LOA | DING | | | | l l | | l | | | Dig & Feed Rock | | | | | | | | | | | TOTAL FEEDING & LOADING COSTS CK CRUSHING ROCK ROCK CU. YD. CRUSHER HOURLY RATE TOTAL SIZE TYPE QUANTITY TYPE PRODUCTION CU. YD. COST 3/4"-0" crushed 1-1/2"-0" crushed | | | | | | | | | | | PCK CRUSHING ROCK ROCK CU. YD. CRUSHER HOURLY RATE TOTAL SIZE TYPE QUANTITY TYPE PRODUCTION CU. YD. COST 3/4"-0" crushed 1-1/2"-0" crushed | Dig & Feed I | Rock | | 14,221 | 4 | \$0.68 | | \$9,650 | | | PCK CRUSHING ROCK ROCK CU. YD. CRUSHER HOURLY RATE TOTAL SIZE TYPE QUANTITY TYPE PRODUCTION CU. YD. COST 3/4"-0" crushed 1-1/2"-0" crushed | | | | | | | | | | | PCK CRUSHING ROCK ROCK CU. YD. CRUSHER HOURLY RATE TOTAL SIZE TYPE QUANTITY TYPE PRODUCTION CU. YD. COST 3/4"-0" crushed 1-1/2"-0" crushed | - | | | | | [| | İ | | | ROCK ROCK CU. YD. CRUSHER HOURLY RATE TOTAL SIZE TYPE QUANTITY TYPE PRODUCTION CU. YD. COST 3/4"-0" crushed 1-1/2"-0" crushed | TOTAL FE | EDING & LOA | DING (| COSTS | | | | | | | ROCK ROCK CU. YD. CRUSHER HOURLY RATE TOTAL SIZE TYPE QUANTITY TYPE PRODUCTION CU. YD. COST 3/4"-0" crushed 1-1/2"-0" crushed | | _ | | | | | | | | | SIZE TYPE QUANTITY TYPE PRODUCTION CU. YD. COST 3/4"-0" crushed | | | | | L as | l | | l mom | | | 3/4"-0" crushed 1-1/2"-0" crushed | | 1 . | | | | | | | | | 1-1/2"-0" crushed | | | | QUANTITY | TYPE | PRODUCTION | CU. YD. | COST | | | | | | | | | ļI | | | | | 4"-0" crushed 12,928 2 stage w/s 140 \$2.48 \$32,043 | | | | 10.000 | | | MO 40 | M20 040 | | | | 4"-0" | crushed | | 12,928 | 2 stage w/s | 140 | \$2.48 | \$32,043 | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | <u> </u> | | l | | | TOTAL ROCK CRUSHING COSTS | LOIALK | TOR CRUSHIN | G CO3 | . 1.7 | ······································ | | | | 9 | | 8) STOC | KPILING | | | | | | | | | |-----------|---|-----------------|----------------|------------------|-------------|----------------|---|---------------------------------|----------------| | - | STOCKPILE S | SITE PREPA | ARATION | | | | | | | | | Equipment | Hours | Rate | Total | | | | | | | | Dozer | | \$120.00 | | Rock | for Floor (CY) | \$/CY Haul | Total | | | | Compactor | | \$72.00 | | | | | | | | | Grader | 3 | \$90.00 | \$270.00 | | | - 111 | | | | | Excavator | | \$138.00 | | • | | | | | | | | | | | \$270.00 | | | | | | | SUB TOTAL | | | | | | | \$270 | | | | | | | | · | ī | | | | | | HAUL & STO | | | | # of | | | • | | | | STOCKPILE I | LOCATION | | SIZE | TRUCKS | CU. YDS. | RATE | COST | | | 1. | | | | | | | | | | | 2. | | | | | _ | | | | | | | Cole Mountain | Quarry | | 4"-0" | 2 | 5,800 | \$1.67 | \$9,694 | | | 4. | *************************************** | | | | | | | | | | 5. | | | | | | | | | | | 6. | | | | | | | | | | | | | | | | | | | *** *** ** ** ** ** ** * | | | | SUB TOTAL | | | | | | | \$9,694 | | | | TOTAL CTO | CHADLE AND | COCTO | | | | | | \$0.064 | | | TOTAL STO | CAPILING | COSIS | | | | | | \$9,964 | | o) Micci | ELLANEOUS | COSTS | | | | | | | | | 9) MISCI | DESCRIPTIO | | | | | | | COST | | | | Load, Haul, an | | roject meteric | al et the wests | nro.a | | | \$3,542 | | | | | 2.74/CY | 1,293 (| | area. | | | Φ3,542 | | | | Φ | 2.74/01 | 1,293 (| J1 | | | | <u> </u> | | | | | | | | | | | | | | | Final Quarry D | làv Δccass | Road Const 1 | Materharring F |)rainana | | | \$2,100 | | | | | Block Quarry | | rvaterbarring, E | namage, | | | Ψ2,100 | | | | | NOOK GEGGITY | , 100000 | | | | | | | | | Seed, Mulch, a | and Fertilize | Waste Area (0 | 2 ac @\$536/a | c)) | | | \$107 | | | | Straw Bales (1 | | <u> </u> | 40 60 40 60 14 | 9// | | | \$100 | | | | | 7 6 7 7 7 7 7 7 | | | | | | | | | | TOTAL MIS | CELLANE | OUS COSTS | | | | | | \$5,849 | | | | | | | | | *************************************** | | 42,015 | | | | | | | | | | | | | 10) GRA | ND TOTAL: | | | | | | | | \$113,705 | | | | | | | | | | \$/Cubic Yard | \$8.80 | | Footnotes | s: | | | | | | | | \$3.30 | | | | | | | | | | | | | | | | | | | | | | | ### SUMMARY OF TEST DRILLING COSTS PROJECT NO. 4 Timber Sale Name: Progeny Split By: S. Bushnell Date: 02/26/2008 | | FALL | CREEK | QUARRY: | NW1/4. | , S20, T4N | I, R8W, W.M. | |--|------|-------|----------------|--------|------------|--------------| |--|------|-------|----------------|--------|------------|--------------| | FALL CREEK QUARRY: NW1/4, S20, T4N, R8W, W.M. DESCRIPTION | COST | |--|-----------------| | Hydraulic Rock Drill (16hr @\$258/hr) + \$1200 Move-In | \$5,328 | | Small Excavator (10hr @ \$94/hr) +688 Move-In | \$1,628 | | COLE MOUNTAIN QUARRY: SE1/4, S14, T4N, R9W, W.M. | COST | | DESCRIPTION Hydraulic Rock Drill (16hr @\$258/hr) | COST
\$4,128 | | IUNCE QUARRY: NE1/4, S31, T5N, R8W, W.M. DESCRIPTION | COST | | Hydraulic Rock Drill (16hr @\$258/hr) + \$1200 Move-In | \$5,328 | | Small Excavator (10hr @ \$94/hr) +688 Move-In | \$1,628 | | ALLY RIDGE ROAD: NW1/4, S24, T4N, R9W, W.M. DESCRIPTION | COST | | Hydraulic Rock Drill (11hr @\$258/hr) + \$1200 Move-In | \$4,038 | | Small Excavator (10hr @ \$94/hr) +688 Move-In | \$1,628 | | OAPSTONE SITE: SW1/4, S15, T4N, R9W, W.M. | | | DESCRIPTION | COST | | Hydraulic Rock Drill (11hr @\$258/hr) + \$1200 Move-In | \$4,038 | | Small Excavator (4\hr @ \$94/hr) +688 Move-In | \$1,064 | | TOTAL TEST DRILLING COSTS | | | | \$28,86 | ## **Progeny Split**
Project No. 5 Road Vacating V1 to V2 | \$2,500.00 | \$522 | \$370 | \$174 | \$662 | \$1,320 | \$4,416 | Cost | |--------------------|------------|----------|-------------------|-------------------|-----------|--------------------------|---| | \$10.00 /bale | \$580 /ac | \$37 /hr | \$29 /waterbar | \$138 /sta | \$132 /hr | \$138 /hr | Rate | | 250 | 0.9 ac | 10 hr | 6 waterbars | 4.8 sta. | 10 hrs | 32 hrs | Total | | | | | | | | 2 hrs | Walk excavator between sites. | | 200 bales | 0.6 ac | ω | 4 waterbars | 4.8 sta. | | hrs | V3 and V4
Sidecast Pulback
Waterbar | | 50 bales | 0.3 ac | 2 | 2 waterbars | sta. | 10 hrs | 25 hrs
5 hrs | Fill Removal
Fill Removal
Waterbar | | Erosion
Control | Grass Seed | Labor | C330
Excavator | C330
Excavator | | C330 D8
Excavator Cat | Location/Description V1 to V2 | Prepared by: John Tillotson Date: 01/18/2008 x:\Document\2008 FY Sales\Progeny Split\Sale Prep\Projects\Vacating Costs -Progeny.xls ### Progeny Split Stream Enhancement Project No. 6 | Location | No. of
Boulders | No. of
Trees | C330 hrs @
\$138/hr | 24 yd of highway
dump @ \$125/hr | Log truck @
\$73/hr | hr \$1,432/ac | |-----------------------------|--------------------|-----------------|------------------------|-------------------------------------|------------------------|---------------| | SE1 to SE2 | 60 | 30 | | | | | | | | | | | | | | Rock Development and load | | - | 10 |) | | | | Rock Haul | | | | 10 | | | | Tree Haul | | | | | 3 | | | Rock and Tree Placement | | | 20 |) | | | | Erosion Control | | | | | | 0. | | | | | | | | | | Total Time, Length or Acres | | | 30 |) 10 | 3 | 0. | | | | | \$138 | \$125 | \$73 | \$1,432 | | Total Cost | | | \$4,140 | \$1,250 | \$219 | \$286 | ### **Projects Road Maintenance Cost Summary** Sale: **Progeny Split** Date: Febuary 26, 2008 By: John Tillotson | Туре | Equipment/Rationale | Hours | Rate | Cost | | | |---------------|----------------------------|-------|------|------------------|-------|------| | | · | 4 7 1 0 0 | | | | Post-Projects | Grader 14G | 57 | \$90 | \$5,100 | | | | Road | Dump Truck 12CY (2 trucks) | 30 | \$73 | \$2,190 | | | | Maintenance | FE Loader C966 | 15 | \$74 | \$1,110 | | | | | Vibratory Roller | 46 | \$72 | \$3,312 | | | | | Water Truck 2500 gallon | 46 | \$78 | \$3,588 | | | | | | ļ | | | | | | | | | | | • | | | | | | | | | | | | | | | | Tatal | A41 | | | | | | | Total | \$1: | ### **Interim Maintenance** Production Rates Grader Vibratory Roller | Miles/day | Distance(miles) | Days | Hours | |-----------|-----------------|------|-------| | 2.0 | 2.0 | 1.0 | 10.00 | | | | | | ### **Final Road Maintenance** Production Rates Grader Vibratory Roller | Miles/day | Distance(miles) | Days | Hours | |-----------|-----------------|------|-------| | 1.5 | 7.0 | 4.7 | 46.67 | | 1.5 | 7.0 | 4.7 | 46.67 | ### *Maintenance calculations were determined as follows: Grade and Compact Cole Mountain Road, Progeny Ridge Road, Fall Creek Road, and Hamlet Stockpile Road **Total Miles: 7 miles.** Grade Hill Road **Total Miles: 2 Miles** ### Progeny Split FY 2008 TIMBER CRUISE REPORT 1. Sale Area Location: Areas 1, 2, 4, and 3 R/W are located in portions of Sections 17, 18, 19, and 20, T4N, R8W, W.M., Clatsop County, Oregon. All timber sale areas are posted with ODF "Timber Sale Boundary" signs, pink ribbon. The boundary between Areas 4 and 5 is posted with "Area Boundary" signs and pink ribbon. R/W areas are posted with ODF "Right-of-Way Boundary" signs and orange ribbon. 2. Fund Distribution: Fund: BOF (100%) Tax Code: 8-01 (96.6%) 10-02 (3.4%) 3. Sale Acreage by Area: | Area | Harvest
Type | Gross
Acreage | New R/W
Acreage | Existing
R/W
Acreage | Stream
Buffer
Acreage | GTRA | Net
Acreage | |--------|-----------------|------------------|--------------------|----------------------------|-----------------------------|------|----------------| | 1 | MC | 66.0 | | -0 | -6.4 | -0.9 | 58.7 | | 2 | MC | 54.4 | | -0 | -1.6 | -0.0 | 52.8 | | 3 | R/W | 1.8 | | -0 | -0.0 | -0.0 | 4.9 | | 4 | PC | 124.7 | -3.1 | N/A | -21.7 | -0.0 | 99.9 | | 5 | MC | 35.0 | | -0 | -3.8 | -0.0 | 31.2 | | Totals | | 281.9 | 3.1* | 0.0 | -33.5 | -0.9 | 247.5 | ^{*}Additional 1.8 acres of R/W located outside of sale area to access areas 1 and 5. - 4. Cruisers and Cruise Dates: Areas 1, 2 and 5 were cruised by John Tillotson, Kraig Kirkpatrick, Dave Horning, Ed Holloran, Kirkpatrick and Bryce Rodgers. Area 4 was cruised by Jay Morey, Dave Horning, Dan Goody, and Kraig Kirkpatrick. All areas were cruised on 11/30/07. - 5. Cruise Method and Computation: All cruises used Corvallis MicroTechnology (CMT) or Allegro data collectors, and were downloaded to the Atterbury <u>Super A.C.E.</u> program in District for computing. See the attached <u>Cruise Design</u> for more details on the cruise method. The cruise calculations were processed in the Astoria district office. <u>Areas 1, 2, and 5 (Modified Clear Cut)</u>, were variable plot cruised with a 54.44 BAF for Conifer and 33.6 BAF for Alder. 62 plots were sampled on a cruise grid of 5 chains by 5 chains, with a count/cruise plot ratio of 2:1. Area 4 (Partial Cut), was variable plot cruised with a 40 BAF for Conifer and 33.6 BAF for Alder. 25 grade plots were sampled on a cruise grid of 6 chains by 4 chains with a count/cruise plot ration of 2:1. All "take" and "leave" trees were measured and graded. | <u>AREAS</u> | PROJECT | CRUISE TYPE | |--------------|-----------|--------------------| | 1, 2, 5 | 04N08WS17 | 0001 | | 4 | 04N08WS17 | 0002 | | 3 R/W | 04N08WS17 | 0002 | ### 6. Timber Description: Areas 1. 2 and 5 (Modified Clear cut) – These stands are approximately 70 years old, consisting of Douglas-fir with some hemlock and some patches of alder. The harvest will remove approximately 126 trees per acre and 42.3 MBF/acre. The average tree size is 19.3 inches in DBH, with an average merchantable height of 64 feet to a merchantable top(6" d.i.b.). Area 4 (Partial Cut) – This stand is an "automark" partial cut, approximately 70 years old, Douglas-fir dominated mixed conifer stand with patches and stringers of alder. The stand will be harvested to a Stand Density Index (SDI) of approximately 34% with a target basal area of 160 square feet. The "biggest and best" conifer trees will be retained. All alder over 12 inches DBH will be harvested except in buffers. All alder 12 inches or less will be reserved, and will not count toward the basal area requirements. The harvest will remove approximately 75 trees per acre and 18.3 MBF/acre. The average "take" tree size is 17.2" DBH and 64 feet to a merchantable top (6" d.i.b). 7. Statistical Analysis: (See also "Statistics Reports," attached.) | Area | Target CV | Target SE% | Actual CV | Actual SE% | |-------|-----------|------------|-----------|------------| | 1,2,5 | 55% | 10% | 51.9% | 6.6% | | 4 | 55% | 10% | 44.9% | 6.5% | The statistics for all cruises are "Take" and "Leave" stands combined. 8. Volumes by Species and Log Grades for All Sale Areas by MBF: (See "Species, Sort, Grade, Length % Type Reports" attached, of the thinning and regeneration harvest areas combined.) Volumes do not include "ingrowth." The majority of defect and breakage was culled out during the cruise. | Species | DBH | Net Vol. | 2 Saw | 3Saw | 4 Saw | SM | Camp
Run | %
D&B | % Sale | |--------------|-----|----------|-------|-------|-------|-----|-------------|----------|--------| | Douglas-fir | 20 | 5,116 | 3,561 | 1,178 | 184 | 193 | | 4 | 62.5 | | Hemlock/fir | 20 | 1,546 | 1,183 | 306 | 57 | | | 10 | 18.9 | | Sitka spruce | 23 | 296 | 152 | 127 | 17 | | | 3 | 3.6 | | Red Alder | 16 | 1,227 | | | | | 1,227 | 5 | 15.0 | | TOTAL | | 8,185 | 4,896 | 1,611 | 258 | 193 | 1,227 | 5.2 | 100 | | 9. | Prepared | by: | المادر | |----|----------|-----|--------| | | • | | . 1 | Date: Z/4/08 10. Approved by: Date: <u>2/4/08</u> 11. Attachments: Species, Sort, Grade Reports (4 pages) Statistics Stand Summary Reports (4 pages) Log Stock Table Reports (4 pages) Leave Tree Stand Table Reports (2 pages) Cruise Plans & Maps (6 pages) ### CRUISE DESIGN ASTORIA DISTRICT | Sa | le N | ame: | Progeny Split | Area(s) <u>1, 2, and 5</u> | |-----|---|--|--|---| | | | | | (Net BF) or (Net BF) or | | Pla | Ianned Sale Volume: 9.9 MMBF Estimated Sale Area Value/Acre: \$11,000 | | | | | Α. | (b)
thin
tree | Sample <u>64</u> aning standard species and Determine | cruise plots; Grade
ds; <u>X</u> Determine
sizes; Detern
"diameter limit" ha | 33 plots; (c) Other goals (Determine "automark" log grades for sale value; X Determine snag and leave mine LWD (down wood) cubic feet and decay classes; vest parameters;) | | B. | 1. | Plot Cruises | : BAF <u>33.6 – Ald</u> Fixed Plot Size Cruise Line Dire Cruise Line Spa Cruise Plot Spac Grade/Count Ra Tree) Cruises: M | ler 54.44 – Conifer ((Full point)); Half point) (circle one) Plot Radius feet ction(s) Area 1 – East / West; Area 2 – North South; Area 5 – North South cing 5 chains 330 feet ctio Grade 1 out of 2 leasure-grade ratios: D-fir Hemlock | | C. | 1. | Diameter: 18" or at least 3 Record DBH for trees > 24 then record t (wildlife) tre | Minimum DBH to cr
to board feet (10' to a
to nearest ½" for tr
". If tree
diameters
to closest estimate. | uise is 8" or at least 20 board feet for conifers and 8" top 16' to a 7" top). for hardwoods . ees < 16", to nearest 1" for trees 16-24", and to nearest 2" are estimated (only estimate on variable plot cruises), Cruise snags 15 DBH inches and over. Cruise all "W" d trees (cedar) as Leave trees by species. 100% all | | | | | | th to nearest foot at TCD. For trees greater than 100 feet ng to the nearest 5 feet is acceptable. | | | | 7" , or 40 % | | Minimum top outside bark for conifer and for hardwoods is m point. Generally, use 7" outside bark for trees < 18" trees > 18" DBH. | **4. Form Factors:** (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. **Hardwood** form factors are a Standard **87**. - **5. Tree Segments:** Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. - 6. Species, Sort, and Grade Codes: A. Species: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) B. Sort: Use code "1" (Domestic). - C. <u>Grade</u>: A = #1 Peeler; B = #2 Peeler; C = #3 Peeler; D = Special Mill; 2 = 2 sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; 9 = Utility Hardwoods: Grade all hardwoods as Camp Run = R. Lengths for Alder are 8 and 10 foot multiples. Wildlife Trees: Estimate Grades for all Wildlife Trees. - 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at indivisible points, not to exceed 100' apart. On "measure/grade" plots write the tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses. <u>ITS and 100% Cruises</u>: Mark cruise "strips" with various colored flagging (not pink). Mark trees measured and graded with <u>yellow</u> paint. - 9. Cruising Equipment: Relaskop Rangefinder Logger's Tape (with DBH on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design by: | Ed Holloran | 11/27/07 | |-------------------|-------------|----------| | Approved by: | Day Goods | | | Date: | u/28/07 () | | | | | | ### CRUISE DESIGN ASTORIA DISTRICT Sale Name: Progeny Split | - Togony opin Aleas 4 | |---| | larvest Type: MC PC CT "Automark Thinning" (circle one Net BP or Net BP or Net BP or September 115 Estimated CV% 50% BA/Acre SE% Objective 10% BA/Acre | | BAAACIE | | lanned Sale Volume: (Area 4) 1.7 MMBF Estimated Sale Area Value/Acre: \$5,250 | | Cruise Goals: (a) Grade minimum 130 conifer and 50 hardwood trees: (b) Sample 54 cruise plots; Grade 27 plots; (c) Other goals (Determine "automark" thinning standards; X Determine log grades for sale value; X Determine snag and leave tree species and sizes; Determine LWD (down wood) cubic feet and decay classes; Determine "diameter limit" harvest parameters;) Basal Area leave target 160-180 sq. ft. Cruiser needs to select 4 or 5 leave trees per plot. | | Truise Design: 1. Plot Cruises: BAF 33.6 – Alder 40.0 – Conifer (Full point) Half point) (circle one) Fixed Plot Size Plot Radius feet Cruise Line Direction(s) Area 4 – East/West Cruise Line Spacing Chains) (feet) Cruise Plot Spacing Grade/Count Ratio Grade 1 out of 2 | | Orace/Count Natio Glade Fout Of Z | | 2. ITS (Sample Tree) Cruises: Measure-grade ratios: D-fir Hemlock | | Spruce True FirCedar Hardwood | | . Tree Measurements: | | 1. Diameter: Minimum DBH to cruise is 8" or at least 20 board feet for conifers and 10" for hardwoods. Record DBH to nearest ½" for trees < 16", to nearest 1" for trees 16-24", and to nearest 2" for trees > 24". If tree diameters are estimated (only estimate on variable plot cruises), then record to closest estimate. | | Bole Length: Record bole length to nearest foot at TCD. For trees greater than 100 feet in
merchantable height, estimating to the nearest 5 feet is acceptable. | | 3. Top Cruise Diameter (TCD): Minimum top outside bark for conifer is 7", 7" for hardwoods or 40 % of DOB at 16' form point for conifers. Generally, use 7" outside bark for trees < 18" DBH and 40% of DOB @ FP for trees > 18" DBH. Cruise snags 15 DBH inches and over. Cruise all reserved trees (cedar and maple trees) as Leave trees by species. Alder less than 10" DBH are to be Leave Trees, but will not count toward the Leave Basal Area requirements. Alder 10" DBH and larger can be Leave trees and will count toward the Basal Area leave requirements (Biggest & Best). Record all conifer less than 10" DBH as Leave Trees. Where | 4. Form Factors: (1) Measure or estimate a 16' form factor for every conifer tree measured/graded; OR (2) Measure a minimum of 20 form factors for each major conifer species on the cruise area, and use these to calculate average FF for the species on the cruise. Hardwood form factors are a Standard 87. available, record an intermediate conifer as a Leave Tree on every other grade plot. - 5. Tree Segments: Record log segments in "standard" log lengths in general use, such as 32' and 40' lengths, whenever possible. Do not record odd segments just to maximize grade. Cull segments can be any length. For conifers, minimum merchantable segment length is 12'; for hardwoods, it's 8'. Maximum segment length is 40'. One foot of trim is assumed for each merch. segment. Do not use "double dash" (--) feature on the data recorder except for the top segment of the tree. - 6. Species, Sort, and Grade Codes: A. Species: Record as D (Douglas-fir); H (Western hemlock); S (Sitka Spruce); C (Western red cedar); NF (Noble fir); SF (Silver fir); A (Red alder); M (Bigleaf maple). For "leave trees" in partial cuts, or for marked "wildlife trees," add an "L" to the species code (such as DL, HL, CL, etc.) - B. <u>Sort</u>: Use code "1" (Domestic). C. <u>Grade</u>: A = 1 Peeler; B = 2 Peeler; C = 3 Peeler; D = Special Mill; 2 = 2 Sawmill; 3 = 3 Sawmill; 4 = 4 Sawmill; R = Camp Run; 0 = Cull; 9 = Utility Hardwoods: Grade all Alder and Maple as Camp Run. Lengths for Alder are 8 and 10 foot multiples. Cruise snags 15 DBH inches and over. Cruise all reserved trees (cedar and maple trees) as Leave trees by species. Alder less than 10" DBH are to be Leave Trees, but will not count toward the Leave Basal Area requirements. Alder 10" DBH and larger can be Leave trees and will count toward the Basal Area leave requirements (Biggest & Best). Record all conifer less than 10" DBH as Leave Trees. Where available, record an intermediate conifer as a Leave Tree on every other grade plot. - 7. **Deductions:** Estimate visible defect or damage as a "length deduction" (most often), or as a "diameter deduction," as applicable. Estimate hidden defect and breakage (usually some breakage is encountered in trees > 100 feet in height) on a "per tree" basis. Steep and broken topography generally results in higher breakage percentages than gentler topography, and hemlock generally breaks more than D-fir and spruce. - 8. Standard Field Procedures: Plot Type Cruises: Mark cruise line beginning and end points with blue/yellow flagging. Write plot identification numbers and line direction on the ribbon. At each plot, tie yellow flagging above eye level near plot center and another yellow flagging around a sturdy wooden stake marking plot center. On each yellow flagging, write the plot identification number. Between plots, along the cruise line, tie blue flagging at indivisible points, not to exceed 100' apart. On "measure/grade" plots write the
tree number and/or tree diameter on at least the first measured tree (clockwise from the line direction) in yellow paint. All trees on the plot may be marked this way, if the cruiser chooses. - 9. Cruising Equipment: Relaskop Rangefinder Logger's Tape (with DBH on back) Biltmore Stick, Compass, Cruise Cards in Tatum OR Data Recorder, Cruise Design, Cruise Map, Yellow Flagging, Blue Flagging, Yellow Paint. - **10.Attachments:** A. <u>Cruise Map</u> (showing cruise unit boundaries, roads, streams, approx. acres/unit, cruise lines and plot locations, legal description and section lines, BAF or plot size, measure/count plot ratio, north arrow, and scale. | Cruise Design by: | Jay Morey | | |-------------------|------------|--| | Approved by: | The Tellet | | | Date: | 11-28-07 | | | | | | | TC | PSPCSTGR | | $\mathbf{S}_{\mathbf{j}}$ | pecies, | Sort G | rade - Boar | d Fo | ot Vo | olum | es (P | roject |) | | | | | | | |----------------------|--|---------------|---------------------------|------------------------------|-----------------------|--------------------|------|----------------|--------------|----------|--------------|---------|--------------|----------------|----------------------|----------------------|------------------------------|----------------------------| | T | 04N R08W S17
04N R08W S17
04N R08W S17 | 7 Ty000 |)2 | 4.90
99.90
42.70 | | Project:
Acres | | OSP
247.5 | | | | | | |] | Page
Date
Time | 2/9/200
3:36:5 | 8 | | | | % | | | | | Per | cent of | Net Bo | oard Fo | oot Volu | me | | | | Average | e Log | Logs | | | S So Gr | Net | Bd. F | t, per Acre | ; | Total | I | og Sca | ale Dia | | | Log L | ength | | Ln | Bd | CF/ | Per | | Spp | T rt ad | BdFt | Def% | Gross | Net | Net MBF | 4-5 | 6-11 | 12-16 | 17+ | 12-20 | 21-30 | 31-35 | 36-99 | Ft | Ft | Lf | /Асте | | D | DOCU | | 100.0 | 694 | | | | | | | | | | | 12 | | 0.00 | 5.4 | | D | DO2S | 69 | .7 | 14,488 | 14,387 | 3,561 | | 1 | 43 | 56 | 1 | 1 | 22 | 76 | 37 | 389 | 2.26 | 37.0 | | D | DO3S | 23 | 1.0 | 4,811 | 4,762 | 1,178 | | 92 | 8 | | 2 | 9 | 37 | 52 | 34 | 93 | 0.80 | 51.0 | | D | DO4S | 4 | | 742 | 742 | 184 | | 100 | | | 57 | 37 | 0 | 6 | 19 | 28 | 0.44 | 26.3 | | D | DOSM | 4 | 2.2 | 799 | 782 | 193 | | | | 100 | | 13 | 68 | 19 | 32 | 707 | 3.71 | 1.1 | | D | Totals | 63 | 4.0 | 21,534 | 20,672 | 5,116 | | 25 | 32 | 43 | 3 | 5 | 26 | 66 | 31 | 171 | 1.30 | 120.8 | | Н
Н
Н | DOCU
DO2S
DO3S
DO4S | 76
20
4 | 100.0
.2
.0 | 675
4,789
1,235
231 | 4,778
1,235
231 | 1,183
306
57 | | 0
61
100 | 33
21 | 67
18 | 1
6
88 | 19
4 | 8
13
7 | 92
62
1 | 14
38
33
17 | 402
112
26 | 0.00
2.32
0.96
0.53 | 1.8
11.9
11.0
8.7 | | H | Totals | 19 | 9.9 | 6,931 | 6,245 | 1,546 | | 16 | 29 | 55 | 5 | 4 | 9 | 82 | 30 | 187 | 1.50 | 33.4 | | \$
\$
\$
\$ | DOCU
DO2S
DO3S
DO4S | 51
43
6 | 100.0
.1 | 33
616
514
67 | 615
514
67 | 152
127
17 | 2 | 20
89 | 58
6
9 | 42
74 | 0
6 | 0
89 | 65 | 100
35
5 | 6
40
33
24 | 376
217
42 | 0.00
2.49
1.83
0.89 | .4
1.6
2.4
1.6 | | S | Totals | 4 | 2.8 | 1,230 | 1,196 | 296 | 0 | 14 | 33 | 54 | 0 | 5 | 28 | 67 | 31 | 199 | 1.85 | 6.0 | | A
A | DOCU
DOCR
Totals | 100
15 | 100.0
.2
4.6 | 231
4,967
5,199 | 4,957
4,957 | 1,227
1,227 | | 65
65 | 24
24 | 11 | 13 | 20 | 40 | 28 | 8
28
27 | 83
79 | 0.00
0.87
0.85 | 2.8
59.9
62.7 | | То | tals | | 5.2 | 34,894 | 33,070 | 8,185 | 0 | 29 | 30 | 41 | 5 | 7 | 25 | 63 | 29 | 148 | 1.23 | 222.9 | | <u>Γ04N</u> | | | | | | Projec | rade - Boai
t: PR(| | , | oru. | ncs (1 | урсу | | | | I | age
Date
ime | 2/9/200
3:36:5 | | |-------------|--------------|---|------|------------------|--------|--------------|-----------------------|-------------------|------|------|---------------------|------------|-------|-------|-------|---------------------|--------------------|-------------------|-------| | Twp
04N | - | | Sec | Tract
TAKE125 | | Туре
0001 | | | | | Sample Trees
171 | | | CuF | | T04N R
BdFt
W | | W S17 T | f0001 | | | % | | | | | | | Percent Net Board | | | | oot Volume | | | | | Average L | | Logs | | | | | Net | Bd. Ft. per Ac | | cre Total | | Log Scale Dia. | | | Log Lengt | | gth | th. | | Bd | CF/ | Per | | | Spp | T rt | ad | BdFt | Def% | Gross | Net | Net MBF | 4-5 | 6-11 | 12-1 | 6 17+ | 12-20 | 21-30 | 31-35 | 36-99 | Ft | Ft | Lf | /Acre | | D | DO | CU | | 00.0 | 1,023 | | | | | | | | | | | 13 | | 0.00 | 5. | | D | DO | 28 | 72 | .4 | 19,129 | 19,044 | 2,718 | , | 1 | 37 | 61 | 1 | 1 | 23 | 75 | 37 | 417 | 2.40 | 45. | | D | ĐO | 38 | 20 | 1.3 | 5,366 | 5,298 | 756 | | 91 | 9 | | 3 | 10 | 41 | 46 | 33 | 93 | 0.81 | 56. | | D | DO | 48 | 2 | | 649 | 649 | 93 | 1 | 100 | | | 63 | 37 | | | 19 | 29 | 0.47 | 22. | | D | DO | SM | 6 | 2.2 | 1,386 | 1,355 | 193 | | | | 100 | | 13 | 68 | 19 | 32 | 707 | 3.71 | 1. | | D 7 | Totals | *************************************** | 61 | 4.4 | 27,554 | 26,347 | 3,760 | | 22 | 29 | 49 | 3 | 4 | 28 | 65 | 31 | 199 | 1.45 | 132. | | A | DO | CU | | 00.0 | 212 | | | | | | | | | | | 7 | | 0.00 | 2. | | A | DO | CR | 100 | .3 | 5,996 | 5,979 | 853 | | 63 | 23 | 13 | 10 | 15 | 42 | 32 | 29 | 86 | 0.88 | 69. | | A 1 | Totals | | 14 | 3.7 | 6,209 | 5,979 | . 853 | | 63 | 23 | 13 | 10 | 15 | 42 | 32 | 28 | 83 | 0.87 | 72. | | H | DO | CU | | 0.00 | 1,115 | İ | · | | | | | | | | | 16 | | 0.00 | 2. | | Н | DO | 2S | 75 | .2 | 6,765 | 6,753 | 964 | | | 30 | 70 | | | 7 | 93 | 39 | 411 | 2.37 | 16. | | H | DO | 38 | 21 | | 1,849 | 1,849 | 264 | | 55 | 24 | 21 | 6 | 17 | 12 | 65 | 33 | 116 | 0.97 | 15. | | Н | DO | 4S | 4 | | 304 | 304 | 43 |] 1 | 100 | | | 100 | | | | 16 | 26 | 0.52 | 11. | | Н ′ | Totals | | 21 | 11.2 | 10,033 | 8,907 | 1,271 | | 15 | 28 | 57 | 5 | 3 | 8 | 84 | 30 | 190 | 1.52 | 46. | | s | DO | CU | | 00.0 | 57 | | | | | | | | | | | 6 | | 0.00 | | | S | DO | 28 | 60 | | 1,020 | 1,020 | 146 | | | 61 | 39 | | | | 100 | 40 | 364 | 2.43 | 2 | | s | DO | 38 | 34 | | 578 | 578 | 83 | | 31 | | 69 | | | 100 | | 32 | 162 | 1.47 | 3. | | S | DO | 48 | 6 | | 101 | 101 | 14 |] | 100 | | | | 100 | | | 24 | 40 | 0.87 | 2. | | s 1 | Totals | | 4 | 3.3 | 1,756 | 1,699 | 242 | | 16 | 36 | 47 | <u> </u> | 6 | 34 | 60 | 30 | 177 | 1.69 | 9 | | Гуре То | otals | | | 5.8 | 45,551 | 42,931 | 6,126 | | 26 | 28 | 46 | 4 | 6 | 26 | 64 | 30 | 165 | 1,32 | 260. | | Т | TSPCSTG | R | | | Species, | Sort G
Projec | rade - Boar
t: PRC | | ot V | olur | nes (T | Гуре) | | | |] | Page
Date
Fime | 2/9/20
3:36:5 | | |-----------------|------------------|----------------------|------------------|--------------------|---------------------------------|--------------------------|-----------------------|----|-----------------|----------|-----------|----------------|---------------|----------------|-----------------|----------------------|----------------------|------------------------------|------------------------------| | T04
Tv
04 | | ge | Sec | Tract
3R/W | | Туре
0002 | | | Piot | | • | le Trees
93 | | C
1 | CuFt | Bd)
W | Ft | SW S17 T | °0002 | | Spp | | Gr
ad | %
Net
BdFt | Bd.
Def% | Ft. per Ac | re
Net | Total
Net MBF | | og Sca | ale D | | Log | Len | _ | 36-99 | Av
Ln
Ft | Bd
Ft | Log
CF/
Lf | Logs
Per
/Acre | | D
D
D | DO
DO
DO | CU
2S
3S
4S | 78
18
4 | .7
.5 | 854
27,503
6,546
1,140 | 27,321
6,513
1,140 | 134
32
6 | | 92
100 | 41
8 | 59 | 1
5
43 | 3
13
36 | 19
28
11 | 78
54
9 | 9
37
32
21 | 400
91
29 | 0.00
2.27
0.82
0.43 | 10.0
68.4
71.4
39.0 | | D
A | Totals
DO | CU | 73 | 3.0 | 36,044
299 | 34,974 | 171 | | 20 | 33 | 46 | 3 | 6 | 20 | 71 | 31
8 | 185 | 0.00 | 188.8 | | A
A | DO Totals | CR | 100 | 6.1 | 4,626
4,926 | 4,626
4,626 | 23 | | 74
74 | 22 | 4 | 20
20 | 34 | 31 | 15
15 | 26
25 | 65
61 | 0.74 | 71.4
75.6 | | н
н
н | DO
DO
DO | CU
2S
3S
4S | 70
22
8 | 1.2 | 186
4,165
1,306
419 | 4,114
1,306
419 | 20
6
2 | | 4
100
100 | 34 | 61 | 2
2
30 | 30
26 | 27
9
10 | 71
59
34 | 6
36
34
23 | 370
107
37 | 0.00
2.20
0.97
0.55 | 1.4
11.1
12.3
11.3 | | Н | Totals | | 12 | 3.9 | 6,076 | 5,839 | 29 | | 33 | 24 | 43 | 4 | 9 | 22 | 65 | 30 | 162 | 1.31 | 36.1 | | S
S
S | DO
DO
DO | CU
2S
3S
4S | 61
18
21 | 100.0
2.9
.0 | 15
1,397
390
442 | 1,356
390
442 | 7
2
2 | 17 | 6
17 | 20
66 | 100
75 | 4
48 | 23
17 | | 100
73
35 | 14
40
31
21 | 1381
328
69 | 0.00
7.49
2.84
1.04 | .8
1.0
1.2
6.5 | | S | Totals
Totals | | 5 | 2.5 | 2,244
49,290 | 2,188
47,628 | 233 | 3 | 4
26 | 17
30 | 75 · | 10 | 8 | 21 | 82
65 | 23
29 | 233
154 | 2.45 | 9.4 | | T | TSPCSTG | R | | | Species, | Sort G
Projec | rade - Boar
t: PRC | | ot V | olun | nes (| Гуре) | | | | I | Page
Date
Time | 2/9/20
3:36:5 | | |-----------------|--------------|----------|-------------|----------------|---------------------|------------------|-----------------------|-----------|---------------|--------|--------------|----------------|--------------|--------|-------|-----------------|----------------------|------------------|------------------| | T04
Tv
04 | - | ge | Sec | Tract
A4TAK | E 2 | Type
0002 | | | Piots | | Samp | le Trees
88 | 3 | C
1 | uFt | T04
Bd1
W | | W S17 | T0002 | | | | | % | | | | | Perc | ent N | let Bo | oard F | oot Volu | ıme | | | Av | erage l | Log |
T aga . | | Spp | S So
T rt | Gr
ad | Net
BdFt | Bd.
Def% | Ft. per Ac
Gross | re
Net | Total
Net MBF | Lo
4-5 | g Sca
6-11 | | ia.
6 17+ | Log | Len
21-30 | _ | 36-99 | Ln
Ft | Bd
Ft | CF/
Lf | Logs · Per /Acre | | D | DO | CU | | 100.0 | 215 | | | | | | | | | | | 12 | | 0.00 | 4.8 | | D | DO | 2S | 59 | 1.7 | 7,220 | 7,100 | 709 | | | 65 | 35 | | 2 | 20 | 78 | 37 | 310 | 1.87 | 22.9 | | D | DO | 3S | 33 | .6 | 3,934 | 3,909 | 390 | | 93 | 7 | | 2 | 6 | 30 | 62 | 34 | 94 | 0.77 | 41.7 | | D | DO | 48 | 8 | | 855 | 855 | 85 | | 100 | | | 51 | 36 | | 13 | 20 | 27 | 0.41 | 31.4 | | D | Totals | | 65 | 3.0 | 12,224 | 11,864 | 1,185 | | 38 | 41 | 21 | 4 | 6 | 22 | 68 | 29 | 118 | 1.00 | 100.8 | | Α | DO | CU | | 00.0 | 255 | | | | | | | | | | | 9 | | 0.00 | 2.8 | | Α | DO | CR | 100 | | 3,515 | 3,515 | 351 | | 70 | 25 | 5 | 19 | 30 | 34 | 17 | 27 | 77 | 0.84 | 45.9 | | A | Totals | | 19 | 6.8 | 3,770 | 3,515 | 351 | | 70 | 25 | 5 | 19 | 30 | 34 | 17 | 26 | 72 | 0.83 | 48.7 | | Н | DO | CU | | 00.0 | 72 | | | | | | | | | | | 6 | | 0.00 | .8 | | Н | DO | 28 | 80 | .4 | 1,997 | 1,990 | 199 | | | 45 | 55 | 3 | | 8 | 89 | 37 | 367 | 2.11 | 5.4 | | Н | DO | 38 | 15 | | 356 | 356 | 36 | | 100 | | | 5 | 34 | 23 | 39 | 31 | 92 | 0.90 | 3.9 | | Н | DO | 48 | 5 | | 117 | 117 | 12 | | 100 | | | 55 | 13 | 32 | | 18 | 29 | 0.55 | 4.0 | | H | Totals | | 13 | 3.1 | 2,542 | 2,463 | 246 | | 19 | 37 | 44 | 6 | 6 | 11 | 78 | 28 | 175 | 1.44 | 14.1 | | S | DO | 38 | 100 | | 428 | 428 | 43 | | | 17 | 83 | | | | 100 | 40 | 605 | 3.86 | .7 | | s | Totals | | 2 | | 428 | 428 | 43 | | | 17 | 83 | | | | 100 | 40 | 605 | 3.86 | .7 | | Туре | Totals | | | 3.7 | 18,964 | 18,269 | 1,825 | | 41 | 37 | 23 | 7 | 10 | 22 | 60 | 28 | 111 | 1.01 | 164.3 | | 04N 00
04N 00
04N 00
TOTAL
CRUISE | | SC TRACT | | | JECT
OJECT | | ISTICS
OSP | | | PAGE
DATE | 1
2/9/2008 | |--|--|--|--|----------------------|--|--|---|--------|------------------|--------------|----------------------| | 04N 00
04N 00
TOTAL
CRUISE | 8W | | • | ГҮРЕ | | A | CRES | PLOTS | TREES | CuFt | BdFt | | CRUISE | | 17 A3R/W17 A4TAKE217 TAKE125 | 1 | 0002
0002
0001 | | | 247.50 | 158 | 835 | 1 | W | | CRUISE | | | | | TREES | | ESTIMATED
TOTAL | | ERCENT
SAMPLE | | | | CRUISE | | PLOTS | TREES | | PER PLO | Т | TREES | | TREES | | | | | | 158 | 835 | | 5.3 | | | | | | | | DDITO | 3 | 83 | 450 | | 5.4 | | 26,268 | | 1.7 | | | | REFORI | DUNT
EST | | | | | | | | | | | | COUNT | • | 72 | 363 | | 5.0 | | | | | | | | BLANK | .S | 3 | | | | | | | | | | | 100 % | | | | | | | | | | * | | | | | | | STA | ND SUM | MARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUG F | | 263 | 49.8 | 20.0 | 77 | | 108.8 | 21,534 | 20,672 | 4,938 | 4,807 | | R ALDE | ER. | 119 | 37.0 | 15.6 | 48 | | 49.2 | 5,199 | 4,957 | 1,495 | 1,452 | | WHEMI | | 54 | 16.0 | 20.2 | 64 | | 35.6 | 6,931 | 6,245 | 1,596 | 1,478 | | S SPRU | | 14 | 3.4 | 22.6 | 56 | | 9.4 | 1,230 | 1,196 | 344 | 339 | | TOTAL | _ | 450 | 106.1 | 18.7 | 64 | | 203.0 | 34,894 | 33,070 | 8,373 | 8,075 | | | 8.1 | COEFF
VAR.% | S.E.% | т. | SAMP: | LE TREE | S - BF
HIGH | # | OF TREES | | INF. POP. | | DOUG F | 1.0 | 74.6 | 3.E.76
4.6 | L/ | 701 | 734 | 768 | | 5 | 10 | 1 | | R ALDE | | 97.4 | 8.9 | | 149 | 164 | 178 | | | | | | WHEMI | | 75.3 | 10.2 | | 581 | 648 | 714 | | | | | | S SPRU | CE | 144.0 | 39.9 | | 895 | 1,489 | 2,083 | | | | | | TOTAL | | 109.8 | 5.2 | | 566 | 597 | 627 | | 481 | 120 | 5. | | | 8.1 | COEFF | | | TREES | S/ACRE | | # | OF PLOTS | REQ. | INF. POP. | | SD: | | VAR.% | S.E.% | L | <u>ow</u> | AVG | HIGH | | 5 | 10 | 1 | | DOUG F | | 166.4 | 13.2 | | 43 | 50 | 56 | | | | | | R ALDE | | 191.1
264.0 | 15.2
21.0 | | 31
13 | 37
16 | 4 3
19 | | | | | | AA LIEIAH | | 393.6 | 31.3 | | 2 | 3 | 4 | | | | | | C CDRII | | 102.6 | 8.2 | | 97 | 106 | 115 | | 420 | 105 | 4 | | S SPRUC | | COEFF | | | | L AREA/ | | # | OF PLOTS | | | | S SPRUCTOTAL | 8.1 | 37AD 0/ | S.E.% | L | ow | AVG | HIGH | | 5 | 10 | INF. POP. | | CL 6 | 8.1
1.0 | VAR.% | | | 0.0 | 100 | | | | | INF. POP. | | CL 6
SD: | 1.0
FIR | 151.9 | 12.1 | | 96 | 109 | 122 | | | | | | CL 6
SD:
DOUG F
R ALDE | 1.0
FIR
ER | 151.9
183.3 | 14.6 | | 42 | 49 | 122
56 | | | | | | CL 6
SD:
DOUG F
R ALDE
WHEMI | 1.0
FIR
ER
LOCK | 151.9
183.3
256.5 | 14.6
20.4 | | 42
28 | 49
36 | 122
56
43 | | | | | | CL 6
SD:
DOUG F
R ALDE
WHEMI
S SPRUG | 1.0
FIR
ER
LOCK
CE | 151.9
183.3
256.5
366.6 | 14.6
20.4
29.1 | | 42
28
7 | 49
36
9 | 122
56
43
12 | | 20. | 00 | 1 | | CL 6
SD:
DOUG F
R ALDE
WHEMI | 1.0
FIR
ER
LOCK
CE | 151.9
183.3
256.5 | 14.6
20.4 | | 42
28 | 49
36 | 122
56
43 | | 391 | 98 | | | CL 6 SD: DOUG F R ALDE WHEMI S SPRUG TOTAL | 1.0
FIR
ER
LOCK
CE | 151.9
183.3
256.5
366.6
98.9
COEFF | 14.6
20.4
29.1
7.9 | | 42
28
7
187
NET B | 49
36
9
203
F/ACRE | 122
56
43
12
219 | # | 391
OF PLOTS | | 1 | | CL 6 SD: DOUG F R ALDE WHEMI S SPRUG TOTAL CL 6 SD: | 1.0
FIR
ER
LOCK
CE
-
8.1
1.0 | 151.9
183.3
256.5
366.6
98.9
COEFF
VAR.% | 14.6
20.4
29.1
7.9
S.E.% | | 42
28
7
187
NET B
OW | 49
36
9
203
F/ACRE
AVG | 122
56
43
12
219 | # | | | <u>1</u> | | CL 6 SD: DOUG F R ALDE WHEMI S SPRUC TOTAL CL 6 SD: DOUG F | 1.0
FIR
ER
LOCK
CE
58.1
1.0 | 151.9
183.3
256.5
366.6
98.9
COEFF
VAR.%
152.4 | 14.6
20.4
29.1
7.9
S.E.%
12.1 | 1 | 42
28
7
187
NET B
OW
8,167 | 49
36
9
203
F/ACRE
AVG
20,672 | 122
56
43
12
219
HIGH
23,176 | # | OF PLOTS | REQ. | 1
4.
INF. POP. | | CL 6 SD: DOUG F R ALDE WHEMI S SPRUG TOTAL CL 6 SD: DOUG F R ALDE | 1.0
FIR
ER
LOCK
CE
58.1
1.0
FIR
ER | 151.9
183.3
256.5
366.6
98.9
COEFF
VAR.%
152.4
189.2 | 14.6
20.4
29.1
7.9
S.E.%
12.1
15.0 | 1 | 42
28
7
187
NET B
OW
8,167
4,212 | 49
36
9
203
F/ACRE
AVG
20,672
4,957 | 122
56
43
12
219
HIGH
23,176
5,703 | # | OF PLOTS | REQ. | 1
4.
INF. POP. | | CL 6 SD: DOUG F R ALDE WHEMI S SPRUC TOTAL CL 6 SD: DOUG F | 1.0
FIR
ER
LOCK
CE
-
8.1
1.0
FIR
ER
LOCK | 151.9
183.3
256.5
366.6
98.9
COEFF
VAR.%
152.4 | 14.6
20.4
29.1
7.9
S.E.%
12.1 | 1 | 42
28
7
187
NET B
OW
8,167 | 49
36
9
203
F/ACRE
AVG
20,672 | 122
56
43
12
219
HIGH
23,176 | # | OF PLOTS | REQ. | 1
4.
INF. POP. | | TC TST | TATS | | | | S7
PROJE | TATIS
CT | TICS
PROSP | | | PAGE
DATE 2 | 1
2/9/2008 | |---------------|----------------|--------|-------------------------------|---------------------------------------|-------------|-------------|-----------------|---------------|-----------------|----------------|---------------| | TWP | RGE | SECT | TRACT | | TYPE | | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 17 | TAKE125 | | 0001 | | 142.70 | 62 | 333 | 1_ | W | | | | | | | TREES | | ESTIMATED TOTAL | | ERCENT
AMPLE | | | | | | PLOTS | TREES | | PER PLOT | Γ | TREES | T | REES | | | | TOTA | AL. | 62 | 333 | | 5.4 | | | | | | | | | COUNT
PREST | 32 | | | 5.3 | | 18,018 | | .9 | | | | BLAN
100 % | | | | | | | | | | | | | .,, | | | | STA | ND SUM | MARY | WMW.111. | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUG | G FIR | 89 | | 21.2 | 78 | | 134.4 | 27,554 | 26,347 | 6,175 | 5,982 | | R ALI | | 53 | | 15.7 | 49 | | 56.9 | 6,209 | 5,979 | 1,779 | 1,741 | | WHE | MLOCK | 2: | 3 23.5 | 20.1 | 61 | | 51.8 | 10,033 | 8,907 | 2,308 | 2,113 | | S SPR | RUCE | 4 | 4 5.4 | 21.9 | 56 | | 14.1 | 1,756 | 1,699 | 502 | 492 | | TOT | AL | 169 | 9 126.3 | 19.3 | 64 | | 257.2 | <i>45,551</i> | 42,931 | 10,764 | 10,328 | | CON | | | OF THE SAMPL
JT OF 100 THE | | WILL BI | E WITHI | N THE SAMPI | LE ERROR | | | | | CL: | 68.1 % | COE | FF | | SAMPI | E TREE | S - BF | # | OF TREES | REO. | INF. POP. | | SD: | 1.0 | VAR | R.% S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | G FIR | 74. | 1 7.8 | | 771 | 837 | 902 | | | | | | R ALI | DER | 102. | 4 14.1. | | 174 | 202 | 230 | | | | | | | MLOCK | 75. | | | 637 | 759 | 881 | | | | | | S SPR | | 79. | | | 269 | 493 | 716 | | | | | | TOTA | AL | 94. | 7 7.3 | | 574 | 619 | 664 | | 358 | 89 | 40 | | CL: | 68.1 % | COE | FF | | TREES | /ACRE | | # | OF PLOTS | REO. | INF. POP. | | SD: | 1.0 | VAR | 8.% S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | G FIR | 129. | 1 16.4 | | 46 | 55 | 64 | | | | - | | R ALI | DER | 158. | | | 34 | 43 | 51 | | | | | | | MLOCK | 178. | | | 18 | 23 | 29 | | • | | | | S SPR | | 258. | | | 4 | 5 | 7 | | | | | | TOTA | | 61 | | ****** | 116 | 126 | 136 | | 149 | 37 | 17 | | | 68.1 % | COE | | | | AREA/ | ACRE | # | OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAR | | Le | OW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | | 107. |
| | 116 | 134 | 153 | | | | | | R ALI | | 149. | | | 46 | 57 | 68 | | | | | | | MLOCK | 173. | | | 40 | 52 | 63 | | | | | | S SPR | | 252. | | | 10 | 14 | 19
274 | | 104 | 37 | | | TOTA | | 51 | | · · · · · · · · · · · · · · · · · · · | 240 | 257 | 274 | | 104 | 26 | 12 | | | 68.1 % | COE | | | | F/ACRE | | # | OF PLOTS | | INF. POP. | | SD: | 1.0 | VAR | | | OW . | AVG | HIGH | | 5 | 10 | 15 | | DOUG | | 105. | | | 2,837 | 26,347 | 29,857 | | | | | | R ALI | | 149. | | | 4,848 | 5,979 | 7,109 | | | | | | | MLOCK | 177. | | | 6,905 | 8,907 | 10,908 | | | | | | S SPR | | 256. | | | 1,146 | 1,699 | 2,252 | | 1.46 | 25 | • | | TOTA | AL | 60 | 5 7.7 | 35 | 7,633 | 42,931 | 46,229 | | 146 | 37 | 16 | | TC TSTATS | | | | ST.
PROJEC | ATIST
T | TICS
PROSP | | | PAGE
DATE | 1
2/9/2008 | |--|---|--|--|--|---|---|-----------------|---|---|------------------------------------| | TWP RGE | SECT T | RACT | | TYPE | · AC | RES | PLOTS | TREES | CuFt | BdFt | | 04N 08W | 17 A | 3R/W | | 0002 | | 4.90 | 48 | 347 | 1 | W | | | | | T | REES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | PLOTS | TREES | Pl | ER PLOT | | TREES | 7 | TREES | | | | TOTAL | 48 | 347 | | 7.2 | | | | | | | | CRUISE | 27 | 193 | | 7.1 | | 720 | | 26.8 | | | | DBH COUNT | | | | | | | | | | | | REFOREST | | | | | | | | | | | | COUNT | 21 | 141 | | 6.7 | | | | | | | | BLANKS | | | | | | | | | | | | 100 % | | | | | | | | | | | | | | | STAN | D SUMM | IARY | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | S NET | | <u></u> | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUG FIR · | 125 | 71.7 | 21.1 | 84 | | 174.2 | 36,044 | 34,974 | 8,207 | 8,064 | | R ALDER | 37 | 51.4 | 14.0 | 39 | | 54.6 | 4,926 | 4,626 | 1,445 | 1,388 | | WHEMLOCK | 22 | 17.1 | 19.4 | 67 | | 35.0 | 6,076 | 5,839 | 1,454 | | | S SPRUCE | 9 | 6.7 | 20.2 | 34 | | 15.0 | 2,244 | 2,188 | 544 | | | TOTAL | 193 | 147.0 | 18.6 | 64 | | 278.8 | 49,290 | 47,628 | 11,650 | 11,413 | | 69.1 | TIMES OUT | OF 100 THE | VALUATE V | WILL DE | u_{T} | TTLE CANDI | 1 6 6 6 6 6 6 6 | | | | | CL: 68.1 % | TIMES OUT
COEFF | | | VILL BE
SAMPLI | | | | FOF TREE | S REQ. | INF. POP. | | CL: 68.1 %
SD: 1.0 | COEFF
VAR.% | S.E.% | LO | SAMPLI
W | E TREE
AVG | S - BF
HIGH | | | S REQ. | INF. POP. | | CL: 68.1 %
SD: 1.0
DOUG FIR | COEFF
VAR.%
66.9 | S.E.%
6.0 | LO | SAMPLI
W
728 | E TREE
AVG
775 | S - BF
HIGH
821 | | FOF TREE | | | | CL: 68.1 %
SD: 1.0
DOUG FIR
R ALDER | COEFF
VAR.%
66.9
80.9 | S.E.%
6.0
13.3 | LO | SAMPLI
W
728
106 | E TREE
AVG
775
122 | S - BF
HIGH
821
138 | | FOF TREE | | | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK | COEFF
VAR.%
66.9
80.9
80.9 | S.E.%
6.0
13.3
17.6 | LO | SAMPLI
W
728
106
449 | E TREE
AVG
775
122
545 | S - BF
HIGH
821
138
641 | | FOF TREE | | | | CL: 68.1 %
SD: 1.0
DOUG FIR
R ALDER | COEFF
VAR.%
66.9
80.9
80.9
131.4 | 5.E.%
6.0
13.3
17.6
46.4 | LO' | SAMPLI
W
728
106
449
053 | E TREE
AVG
775
122
545
1,963 | S - BF
HIGH
821
138
641
2,874 | | FOR TREE | 10 | 15 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL | COEFF
VAR.%
66.9
80.9
80.9
131.4
115.9 | 5 S.E.%
6.0
13.3
17.6
46.4
8.3 | LO' | SAMPLI
W
728
106
449
053 | E TREE
AVG
775
122
545
1,963
679 | S - BF
HIGH
821
138
641 | # | # OF TREE | 134 | 60 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % | COEFF
VAR.%
66.9
80.9
80.9
131.4
115.9
COEFF | 5.E.%
6.0
13.3
17.6
46.4
8.3 | LO' | SAMPLE
W
728
106
449
053
522
TREES/A | E TREE
AVG
775
122
545
1,963
679 | S - BF
HIGH
821
138
641
2,874
735 | # | # OF TREE: 5 536 # OF PLOT | 10
134
S REQ. | 60 INF. POP. | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 | COEFF
VAR.%
66.9
80.9
80.9
131.4
115.9
COEFF
VAR.% | S.E.%
6.0
13.3
17.6
46.4
8.3 | LO' | SAMPLE
W
728
106
449
053
522
TREES/A | E TREE
AVG
775
122
545
1,963
679
ACRE
AVG | S - BF
HIGH
821
138
641
2,874
735 | # | # OF TREE | 134 | 60 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR | COEFF
VAR.%
66.9
80.9
131.4
115.9
COEFF
VAR.% | S.E.%
6.0
13.3
17.6
46.4
8.3
5
5 S.E.%
13.8 | LO' | SAMPLE
W
728
106
449
053
522
TREES/A | E TREE
AVG
775
122
545
1,963
679
ACRE
AVG
72 | S - BF
HIGH
821
138
641
2,874
735
HIGH | # | # OF TREE: 5 536 # OF PLOT | 10
134
S REQ. | 60 INF. POP. | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 | COEFF
VAR.%
66.9
80.9
80.9
131.4
115.9
COEFF
VAR.% | S.E.%
6.0
13.3
17.6
46.4
8.3 | LO' | SAMPLE
W
728
106
449
053
522
TREES/A
W
62 | E TREE
AVG
775
122
545
1,963
679
ACRE
AVG | S - BF
HIGH
821
138
641
2,874
735 | # | # OF TREE: 5 536 # OF PLOT | 10
134
S REQ. | 60 INF. POP. | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE | COEFF
VAR.%
66.9
80.9
131.4
115.9
COEFF
VAR.%
95.9
132.6 | S.E.% 6.0 13.3 17.6 46.4 8.3 5.E.% 13.8 19.1 22.9 40.6 | LO' | SAMPLE
W
728
106
449
053
522
TREES/A
W
62
42 | E TREE
AVG
775
122
545
1,963
679
ACRE
AVG
72
51 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61 | # | # OF TREE
5
536
OF PLOT
5 | 10
134
S REQ. | 60 INF. POP. | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK | COEFF
VAR.%
66.9
80.9
80.9
131.4
115.9
COEFF
VAR.%
95.9
132.6
158.9 | S.E.% 6.0 13.3 17.6 46.4 8.3 5.E.% 13.8 19.1 22.9 | LO' LO' | SAMPLE
W
728
106
449
053
622
TREES/A
W
62
42
13 | E TREE
AVG
775
122
545
1,963
679
ACRE
AVG
72
51 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21 | # | # OF TREE: 5 536 # OF PLOT | 10
134
S REQ. | 60 INF. POP. | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE | COEFF
VAR.%
66.9
80.9
131.4
115.9
COEFF
VAR.%
95.9
132.6
158.9
281.3 | S.E.%
6.0
13.3
17.6
46.4
8.3
5
S.E.%
13.8
19.1
22.9
40.6
6.9 | LO' | SAMPLI
W 728
106
449
053
522
TREES/A
W 62
42
13
4 | E TREE
AVG
775
122
545
1,963
679
ACRE
AVG
72
51
17
7
147 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157 | <i>‡</i> | # OF TREE
5
536
OF PLOT
5 | 10
134
S REQ.
10 | 60 INF. POP. 15 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 | COEFF
VAR.%
66.9
80.9
80.9
131.4
115.9
COEFF
VAR.%
95.9
132.6
158.9
281.3
48.1
COEFF
VAR.% | S.E.% 6. 7. S.E.% 7. S.E.% 8. S.E.% 8. S.E.% 8. S.E.% 8. S.E.% 9. S.E.% 9. S.E.% 9. S.E.% | LO' LO' | SAMPLE W 728 106 449 053 622 TREES/A W 62 42 13 4 737 BASAL A | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157 | <i>‡</i> | # OF TREE. 5 536 # OF PLOT 5 | 10
134
S REQ.
10 | 60
INF. POP.
15 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 | S.E.% 6. 7. 11.0 | LO' LO' | SAMPLE W 728 106 449 053 622 TREES/A W 62 42 13 4 737 BASAL A W | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
ACRE
HIGH
193 | <i>‡</i> | # OF TREE. 5 536 # OF PLOT 5 | 10 134 S REO. 10 23 S REQ. | 60 INF. POP. 15 10 INF. POP. | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL:
68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 117.5 | S.E.% 6. S.E.% 6. S.E.% 13.3 17.6 46.4 8.3 6. S.E.% 13.8 19.1 22.9 40.6 6.9 5. S.E.% 11.0 16.9 | LO' LO' | SAMPLE W 728 106 449 053 622 TREES/A W 62 42 13 4 737 BASAL A W 155 45 | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 55 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
ACRE
HIGH
193
64 | <i>‡</i> | # OF TREE. 5 536 # OF PLOT 5 | 10 134 S REO. 10 23 S REQ. | 60 INF. POP. 15 10 INF. POP. | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 117.5 144.6 | S.E.% 6.0 13.3 17.6 46.4 8.3 6. S.E.% 13.8 19.1 22.9 40.6 6.9 6. S.E.% 11.0 16.9 20.9 | LO' LO' | SAMPLE W 728 106 449 053 622 TREES/A W 62 42 13 4 737 BASAL A W 155 45 28 | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 55 35 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
CCRE
HIGH
193
64
42 | <i>‡</i> | # OF TREE. 5 536 # OF PLOT 5 | 10 134 S REO. 10 23 S REQ. | 60 INF. POP. 15 10 INF. POP. | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 117.5 144.6 224.3 | S.E.% 6.0 13.3 17.6 46.4 8.3 6. S.E.% 13.8 19.1 22.9 40.6 6.9 6. S.E.% 11.0 16.9 20.9 32.3 | LO' LO' | SAMPLE W 728 106 449 053 622 TREES/A W 62 42 13 4 737 BASAL A W 155 45 28 10 | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 55 35 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
CCRE
HIGH
193
64
42
20 | <i>‡</i> | # OF TREE. 5 536 # OF PLOT 5 92 # OF PLOT 5 | 134
S REO.
10
23
S REQ.
10 | 60 INF. POP. 15 10 INF. POP. 15 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 117.5 144.6 224.3 30.9 | S.E.% 6.0 13.3 17.6 46.4 8.3 6. S.E.% 13.8 19.1 22.9 40.6 6.9 6. S.E.% 11.0 16.9 20.9 32.3 4.5 | LO' LO' | SAMPLE W 728 106 449 053 622 TREES/A W 62 42 13 4 737 BASAL A W 155 45 28 10 266 | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 55 35 15 279 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
CCRE
HIGH
193
64
42 | # | # OF TREE. 5 536 # OF PLOT 5 92 # OF PLOT 5 | 10 134 S REO. 10 23 S REQ. 10 | 15 60 INF. POP. 15 10 INF. POP. 15 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 117.5 144.6 224.3 30.9 COEFF | S.E.% 6. S.E.% 6. S.E.% 13.3 17.6 46.4 8.3 6. S.E.% 13.8 19.1 22.9 40.6 6.9 11.0 16.9 20.9 32.3 4.5 | LO' LO' | SAMPLE W 728 106 449 053 622 TREES/A W 62 42 13 4 737 BASAL A W 155 45 28 10 266 NET BF/ | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 55 35 15 279 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
ACRE
HIGH
193
64
42
20
291 | # | # OF TREE 5 536 # OF PLOT 5 92 # OF PLOT 5 | 10 134 S REO. 10 23 S REQ. 10 10 S REQ. | 15 60 INF. POP. 15 10 INF. POP. 15 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SPRUCE TOTAL | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 117.5 144.6 224.3 30.9 COEFF VAR.% | S.E.% 6.0 13.3 17.6 46.4 8.3 6. S.E.% 13.8 19.1 22.9 40.6 6.9 11.0 16.9 20.9 32.3 4.5 6. S.E.% | LO' LO' LO' | SAMPLE W 728 106 449 053 622 TREES/A W 62 42 13 4 737 BASAL A W 155 45 28 10 266 NET BF/W | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 55 35 15 279 ACRE AVG | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
CCRE
HIGH
193
64
42
20
291
HIGH | # | # OF TREE. 5 536 # OF PLOT 5 92 # OF PLOT 5 | 10 134 S REO. 10 23 S REQ. 10 | 15 60 INF. POP. 15 10 INF. POP. 15 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 117.5 144.6 224.3 30.9 COEFF VAR.% 73.7 | S.E.% 6.0 13.3 17.6 46.4 8.3 6. S.E.% 13.8 19.1 22.9 40.6 6.9 11.0 16.9 20.9 32.3 4.5 6. S.E.% 10.6 | LO' LO' LO' 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | SAMPLE W 728 106 449 053 622 TREES/A W 62 42 13 4 737 BASAL A W 155 45 28 10 266 NET BF/W W 2554 3 | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 55 35 15 279 ACRE AVG | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
CCRE
HIGH
193
64
42
20
291
HIGH
38,694 | # | # OF TREE 5 536 # OF PLOT 5 92 # OF PLOT 5 | 10 134 S REO. 10 23 S REQ. 10 10 S REQ. | 15 60 INF. POP. 15 10 INF. POP. 15 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 117.5 144.6 224.3 30.9 COEFF VAR.% 73.7 117.2 | S.E.% 6.0 13.3 17.6 46.4 8.3 6.S.E.% 13.8 19.1 22.9 40.6 6.9 6.S.E.% 11.0 16.9 20.9 32.3 4.5 6.S.E.% 10.6 16.9 | LO' LO' LO' 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | SAMPLE W 728 106 449 053 522 TREES/A W 62 42 13 4 737 BASAL A W 155 45 28 10 266 NET BF/ W 254 3845 | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 55 35 15 279 ACRE AVG 4,974 4,626 | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
CRE
HIGH
193
64
42
20
291
HIGH
38,694
5,408 | # | # OF TREE 5 536 # OF PLOT 5 92 # OF PLOT 5 | 10 134 S REO. 10 23 S REQ. 10 10 S REQ. | 15 60 INF. POP. 15 10 INF. POP. 15 | | CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR R ALDER WHEMLOCK S SPRUCE TOTAL | COEFF VAR.% 66.9 80.9 80.9 131.4 115.9 COEFF VAR.% 95.9 132.6 158.9 281.3 48.1 COEFF VAR.% 76.0 117.5 144.6 224.3 30.9 COEFF VAR.% 73.7 | S.E.% 6.0 13.3 17.6 46.4 8.3 6. S.E.% 13.8 19.1 22.9 40.6 6.9 11.0 16.9 20.9 32.3 4.5 6. S.E.% 10.6 | LO' LO' LO' 1, C LO' 31, 3, 4, | SAMPLI
W 728
106
449
053
522
TREES/A
W 62
42
13
4
737
BASAL A
W 155
45
28
10
266
NET BF/W 254
3845
631 | E TREE AVG 775 122 545 1,963 679 ACRE AVG 72 51 17 7 147 AREA/A AVG 174 55 35 15 279 ACRE AVG | S - BF
HIGH
821
138
641
2,874
735
HIGH
82
61
21
9
157
CCRE
HIGH
193
64
42
20
291
HIGH
38,694 | # | # OF TREE 5 536 # OF PLOT 5 92 # OF PLOT 5 | 10 134 S REO. 10 23 S REQ. 10 10 S REQ. | 15 60 INF. POP. 15 10 INF. POP. 15 | | TC TST | ATS | | | | | TATIS | | | | PAGE | 1 | |--------|--------|-----------------|----------------------------|------------|-------------|------------|-----------------|----------------|-----------------|----------------|------------------| | | DOE | OECO n | 5D 4 600 | | PROJE | | PROSP | DI OTO | | - | /9/2008 | | TWP | RGE | | TRACT | | TYPE | A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | <u> 17 A</u> | A4TAKE2 | | 0002 | | 99.90 | 48 | 155 | <u> </u> | W | | | | | | | TREES | | ESTIMATED TOTAL | | ERCENT
AMPLE | | | | | | PLOTS | TREES | | PER PLOT | Γ | TREES | T | REES | | | | TOTA | AL | 48 | 155 | | 3.2 | | | | | | | | CRUI | SE | 24 | 88 | | 3.7 | | 7,530 | | 1.2 | | | | DBH | COUNT | | | | | | | | | | | | | REST | | | | | | | | | | | | COU | | 21 | 64 | | 3.0 | | | | | | | | BLAN | | 3 | | | | | | | | | | | 100 % | Ó . | | | COD 4 | ND CVIDE | | | | | | | | | | 2 4 3 M I D | FF-17-0 | | ND SUM | | DAGAI | OD OGG |) TOTAL | CD OCC |) TTTT | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DOUG | G FIR | 49 | 41.4 | 17.5 | 75 | | 69.2 | 12,224 | 11,864 | 3,010 | 2,969 | | R ALI | DER | 29 | 28.3 | 15.7 | 47 | | 37.8 | 3,770 | 3,515 | 1,090 | 1,042 | | | MLOCK | 9 | 5.3 | 20.7 | 77 | | 12.5 | 2,542 | 2,463 | 586 | 574 | | S SPR | | 1 | .4 | 36.0 | 83 | | 2.5 | 428 | 428 | 109 | 109 | | TOT | AL | 88 |
75.4 | 17.2 | 64 | | 122.0 | 18,964 | 18,269 | 4,795 | 4,694 | | CON | | | F THE SAMPL
COF 100 THE | | E WILL BI | E WITHI | N THE SAMP | LE ERROR | | | | | CL: | 68.1 % | COEF | F | | SAMPI | LE TREI | ES - BF | # | OF TREES | REQ. | INF. POP. | | SD: | 1.0 | VAR.9 | % S.E.% | L | .OW | AVG | HIGH | | 5 | 10 | 15 | | DOU | G FIR | 81.3 | | | 394 | 446 | 498 | | | | | | R AL | | 67.2 | | | 128 | 147 | 165 | | | | | | S SPF | MLOCK | 50.7 | 17.9 | | 504 | 613 | 723 | | | | | | TOT | | 92.4 | 9.8 | | 336 | 373 | 410 | | 341 | 85 | 38 | | CL: | 68.1 % | COEF | F | | TREES | /ACRE | | # | OF PLOTS | REO. | INF. POP. | | SD: | 1.0 | VAR.S | % S.E.% | L | OW | AVG | HIGH | " | 5 | 10 | 15 | | DOU | | 134.6 | | | 33 | 41 | 49 | | | | | | R AL | | 115.4 | 16.6 | | 24 | 28 | 33 | | | | | | | MLOCK | 246.2 | | | 3 | 5 | 7 | | | | | | S SPF | | 391.4 | | | 0 | 0 | 1 | | | 50 | | | TOT | | 71.0 | | | 68 | 75 | 83 | | 201 | 50 | 22 | | | 68.1 % | COEF | | _ | | AREA/ | | # | OF PLOTS | | INF. POP. | | | 1.0 | VAR.9 | | I | OW 57 | AVG | HIGH | | 5 | 10 | 15 | | DOU | G FIR | 119.7 | | | 57
32 | 69
38 | 81
44 | | | | | | | MLOCK | 109.4
230.2 | | | 32
8 | 38
13 | 44
17 | | | | | | | RUCE | 391.4 | | | 1 | 3 | 4 | | | | | | TOT | | 59.7 | | | 111 | 122 | 132 | | 142 | <i>36</i> | 16 | | | 68.1 % | COEF | | | | F/ACRE | | # | OF PLOTS | | INF. POP. | | SD: | 1.0 | VAR. | % S.E.% | L | .ow | AVG | HIGH | | 5 | 10 | 15 | | | G FIR | 121.9 | | | 9,777 | 11,864 | 13,950 | | | | | | R AL | | 116.3 | | | 2,925 | 3,515 | 4,104 | | | | | | | MLOCK | 238.3 | | | 1,616 | 2,463 | 3,309 | | | | | | | RUCE | 391.4 | | _ | 186 | 428 | 670 | | 244 | | 25 | | тот | AL | 78.1 | 11.3 | I | 6,211 | 18,269 | 20,327 | | 244 | 61 | 27 | | | | | | ST.
PROJEC | ATIS: | ΓICS
PROSP | | | PAGE
DATE 3 | 1
3/20/2008 | |---|---|---|--------------|---|--|--|----------------|-------------------------------------|---|------------------------------------| | TWP RGE | SECT TI | RACT | ** | TYPE | | CRES | PLOTS | TREES | CuFt | BdFt | | 04N 08W | 17 ST | TAY125 | | 0001 | | 142.70 | 62 | 82 | 1 | W | | | | , | | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | PLOTS | TREES | | PER PLOT | | TREES | • | TREES | ÷ | | | TOTAL | 62 | 82 | | 1.3 | | | | ***** | | | | CRUISE DBH COUNT REFOREST COUNT | 20 | 39
43 | | 2.0 | | 2,045 | | 1.9 | | | | BLANKS
100 % | 20 | 7,3 | | 2.0 | | | | | | | | | | | STA | ND SUMM | IARY | | | | ,,,,, | | | | SAMPLE
TREES | TREES
/ACRE | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | SNAG | 14 | 5.7 | 33.1 | 36 | | 33.9 | 326 | | 71 | | | CEDLEAV
DOUGLEAV | 12
7 | 4.6
2.1 | 25.1
30.5 | 47
103 | | 15.8
10.5 | 1,046
2,493 | | 450
516 | 429
516 | | SPRUCELV | 5 | 1.5 | 30.3 | 72 | | 8.8 | 1,637 | - | 365 | 516
340 | | HEMLEAV | 1 | .5 | 32.0 | 110 | | 2.6 | 764 | , | 143 | 95 | | TOTAL | 39 | 14.3 | 30.3 | 55 | | 71.7 | 6,266 | 5,447 | 1,545 | 1,380 | | CL: 68.1 % | E LIMITS OF
TIMES OUT
COEFF | | _ | | | *************************************** | | | | | | SD: 1.0 | VAR.% | S.E.% | L | SAMPLI
OW | L I REE
AVG | S - BF
HIGH | 7 | # OF TREES
5 | 8 REQ.
10 | INF. POP. | | SNAG | 72.0 | | | | | | | | *************************************** | | | CEDLEAV | | 41.5 | | | 2.62 | | | | | | | | | 21.7 | | 284 | 363 | 441 | | | | | | DOUGLEAV | 47.7 | 19.4 | | 1,121 | 1,391 | 1,661 | | | | | | | 47.7
89.5 | 19.4
44.5 | | 1,121 | | | | 985 | 246 | 109 | | DOUGLEAV
SPRUCELV
HEMLEAV
TOTAL | 47.7 | 19.4 | | 1,121
1,229
502 | 1,391
2,214
<i>671</i> | 1,661
3,199 | ****** | 985 | | 109 | | DOUGLEAV
SPRUCELV
HEMLEAV
TOTAL | 47.7
89.5
157.1 | 19.4
44.5
25.1 | | 1,121
1,229
502
TREES/A | 1,391
2,214
<i>671</i>
ACRE | 1,661
3,199
839 | | <i>985</i>
OF PLOTS
5 | S REQ. | INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG | 47.7
89.5
157.1
COEFF
VAR.%
166.5 | 19.4
44.5
25.1
S.E.%
21.1 | | 1,121
1,229
502
TREES/A | 1,391
2,214
<i>671</i> | 1,661
3,199 | į | # OF PLOTS | | | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3 | 19.4
44.5
25.1
S.E.%
21.1
47.6 | | 1,121
1,229
502
TREES/A
OW
4
2 | 1,391
2,214
671
ACRE
AVG
6
5 | 1,661
3,199
839
HIGH
7 | 7 | # OF PLOTS | S REQ. | INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0 | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6 | | 1,121
1,229
502
TREES/A
OW
4
2
1 | 1,391
2,214
671
ACRE
AVG
6
5
2 | 1,661
3,199
839
HIGH
7
7
3 | 7 | # OF PLOTS | S REQ. | INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5 | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0 | | 1,121
1,229
502
TREES/A
OW
4
2
1 | 1,391
2,214
671
ACRE
AVG
6
5
2
2 | 1,661
3,199
839
HIGH
7
7
3
2 | # | # OF PLOTS | S REQ. | INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0 | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6 | | 1,121
1,229
502
TREES/A
OW
4
2
1 | 1,391
2,214
671
ACRE
AVG
6
5
2 | 1,661
3,199
839
HIGH
7
7
3 | 3 | # OF PLOTS
5 | S REQ.
10 | INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1 | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7 | | 1,121
1,229
502
TREES/A
OW
4
2
1
1
0
12 | 1,391
2,214
671
ACRE
AVG
6
5
2
2
0
14 | 1,661
3,199
839
HIGH
7
7
3
2
1 | | # OF PLOTS
5
678 | S REQ.
10 | INF. POP.
15 | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5 | L | 1,121
1,229
502
TREES/A
OW
4
2
1
1
0
12
BASAL A | 1,391
2,214
671
ACRE
AVG
6
5
2
2
0
14 | 1,661
3,199
839
HIGH
7
7
3
2
1
17 | | # OF PLOTS 5 678 # OF PLOTS | 5 REQ.
10
169
5 REQ. | INF. POP.
15
75
INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3 |
19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5 | L | 1,121
1,229
502
TREES/A
OW
4
2
1
1
0
12
BASAL A | 1,391
2,214
671
ACRE
AVG
6
5
2
2
0
14 | 1,661
3,199
839
HIGH
7
7
3
2
1 | | # OF PLOTS
5
678 | S REQ.
10 | INF. POP.
15 | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2 | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9 | L | 1,121 1,229 502 TREES/A OW 4 2 1 0 12 BASAL A OW 27 8 | 1,391
2,214
671
ACRE
AVG
6
5
2
2
0
14
AREA/A
AVG
34
16 | 1,661
3,199
839
HIGH
7
7
3
2
1
17
ACRE
HIGH
41
24 | | # OF PLOTS 5 678 # OF PLOTS | 5 REQ.
10
169
5 REQ. | INF. POP. 15 75 INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2
244.7 | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9
31.0 | L | 1,121 1,229 502 TREES/A OW 4 2 1 1 0 12 BASAL A OW 27 8 7 | 1,391
2,214
671
ACRE
AVG
6
5
2
0
14
AREA/A
AVG
34
16
11 | 1,661
3,199
839
HIGH
7
7
7
3
2
1
17
ACRE
HIGH
41
24
14 | | # OF PLOTS 5 678 # OF PLOTS | 5 REQ.
10
169
5 REQ. | INF. POP.
15
75
INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2
244.7
255.8 | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9
31.0
32.5 | L | 1,121
1,229
502
TREES/A
OW
4
2
1
1
0
12
BASAL A
OW
27
8
7
6 | 1,391
2,214
671
ACRE
AVG
6
5
2
0
14
AREA/A
AVG
34
16
11
9 | 1,661
3,199
839
HIGH
7
7
3
2
1
17
ACRE
HIGH
41
24
14 | | # OF PLOTS 5 678 # OF PLOTS | 5 REQ.
10
169
5 REQ. | INF. POP.
15
75
INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2
244.7
255.8
447.1 | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9
31.0
32.5
56.7 | L | 1,121
1,229
502
TREES/A
OW
4
2
1
0
12
BASAL A
OW
27
8
7
6
1 | 1,391
2,214
671
ACRE
AVG
6
5
2
0
14
AREA/A
AVG
34
16
11
9
3 | 1,661
3,199
839
HIGH
7
7
3
2
1
17
ACRE
HIGH
41
24
14
12
4 | | # OF PLOTS 5 678 # OF PLOTS 5 | 169
S REQ.
10 | 75
INF. POP.
15 | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2
244.7
255.8
447.1
113.3 | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9
31.0
32.5 | L | 1,121 1,229 502 TREES/A OW 4 2 1 0 12 BASAL A OW 27 8 7 6 1 61 | 1,391
2,214
671
ACRE
AVG
6
5
2
0
14
AREA/A
AVG
34
16
11
9
3
72 | 1,661
3,199
839
HIGH
7
7
3
2
1
17
ACRE
HIGH
41
24
14 | * | # OF PLOTS 5 678 # OF PLOTS 5 | 169
S REQ.
10 | 75 INF. POP. 15 75 INF. POP. 15 | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % CEDLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2
244.7
255.8
447.1
113.3
COEFF | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9
31.0
32.5
56.7
14.4 | L | 1,121 1,229 502 TREES/A OW 4 2 1 1 0 12 BASAL A OW 27 8 7 6 1 61 NET BF/ | 1,391
2,214
671
ACRE
AVG
6
5
2
0
14
AREA/A
AVG
34
16
11
9
3
72 | 1,661
3,199
839
HIGH
7
7
7
3
2
1
17
ACRE
HIGH
41
24
14
12
4
82 | * | # OF PLOTS 678 # OF PLOTS 5 512 | 169
S REQ.
10 | 75 INF. POP. 15 75 INF. POP. 15 | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SPRUCELV HEMLEAV TOTAL | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2
244.7
255.8
447.1
113.3
COEFF
VAR.% | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9
31.0
32.5
56.7
14.4 | L | 1,121 1,229 502 TREES/A OW 4 2 1 1 0 12 BASAL A OW 27 8 7 6 1 61 NET BF/OW | 1,391
2,214
671
ACRE
AVG
6
5
2
0
14
AREA/A
AVG
34
16
11
9
3
72
ACRE | 1,661
3,199
839
HIGH 7 7 3 2 1 17 ACRE HIGH 41 24 14 12 4 82 HIGH | * | # OF PLOTS 5 678 # OF PLOTS 5 | 169
S REQ.
10 | 75 INF. POP. 15 75 INF. POP. 15 | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2
244.7
255.8
447.1
113.3
COEFF
VAR.% | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9
31.0
32.5
56.7
14.4
S.E.% | L | 1,121 1,229 502 TREES/A OW 4 2 1 1 0 12 BASAL A OW 27 8 7 6 1 61 NET BF/OW 451 | 1,391
2,214
671
ACRE
AVG
6
5
2
0
14
AREA/A
AVG
34
16
11
9
3
72
ACRE
AVG | 1,661
3,199
839
HIGH 7 7 3 2 1 17 CRE HIGH 41 24 14 12 4 82 HIGH 1,546 | * | # OF PLOTS 678 # OF PLOTS 5 512 | 169
S REQ.
10 | 75 INF. POP. 15 75 INF. POP. 15 | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SPRUCELV HEMLEAV TOTAL CL: 68.1 % SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV DOUGLEAV DOUGLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2
244.7
255.8
447.1
113.3
COEFF
VAR.% | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9
31.0
32.5
56.7
14.4
S.E.% | L | 1,121 1,229 502 TREES/A OW 4 2 1 1 0 12 BASAL A OW 27 8 7 6 1 61 NET BF/OW 451 1,716 | 1,391 2,214 671 ACRE AVG 6 5 2 0 14 AREA/A AVG 34 16 11 9 3 72 ACRE AVG 998 2,471 | 1,661
3,199
839
HIGH 7 7 3 2 1 17 CCRE HIGH 41 24 14 12 4 82 HIGH 1,546 3,226 | * | # OF PLOTS 678 # OF PLOTS 5 512 | 169
S REQ.
10 | 75 INF. POP. 15 57 INF. POP. | | DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV DOUGLEAV SPRUCELV HEMLEAV TOTAL CL: 68.1 % SPRUCELV HEMLEAV TOTAL CL: 68.1 % SPRUCELV HEMLEAV TOTAL CL: 68.1 % SD: 1.0 SNAG CEDLEAV | 47.7
89.5
157.1
COEFF
VAR.%
166.5
375.3
249.0
299.5
447.1
130.3
COEFF
VAR.%
156.0
401.2
244.7
255.8
447.1
113.3
COEFF
VAR.% | 19.4
44.5
25.1
S.E.%
21.1
47.6
31.6
38.0
56.7
16.5
S.E.%
19.8
50.9
31.0
32.5
56.7
14.4
S.E.% | L | 1,121 1,229 502 TREES/A OW 4 2 1 1 0 12 BASAL A OW 27 8 7 6 1 61 NET BF/OW 451 1,716 | 1,391
2,214
671
ACRE
AVG
6
5
2
0
14
AREA/A
AVG
34
16
11
9
3
72
ACRE
AVG | 1,661
3,199
839
HIGH 7 7 3 2 1 17 CRE HIGH 41 24 14 12 4 82 HIGH 1,546 | * | # OF PLOTS 678 # OF PLOTS 5 512 | 169
S REQ.
10 | 75 INF. POP. 15 57 INF. POP. | | | ATS | | | | ST.
PROJEC | ATIST | FICS
PROSP | | | PAGE ·
DATE 2 | 1
2/9/2008 | |--|---|--|---|--------------
---|---|--|------------|-------------------------------|------------------|--| | TWP | RGE | SECT | TRACT | | TYPE | AC | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 17 | A4LEAVE2 | | 0002 | | 99.90 | 48 | 216 | 1 | W | | | | | | - | TREES | | ESTIMATED
TOTAL | | PERCENT
SAMPLE | | | | | | PLOTS | TREES | I | PER PLOT | | TREES | 1 | TREES | | | | TOTA | L | 48 | 216 | | 4.5 | | | | | | | | CRUIS | SE | 27 | 119 | | 4.4 | | 8,088 | | 1.5 | | | | | COUNT | | | | | | | | | | | | REFOI
COUN | | 21 | 90 | | 4.3 | | | | | | | | BLAN | | 21 | 90 | | 4.5 | | | | | | | | 100 % | | | - | | | | | | | | | | | | | | STAI | ND SUMM | 1ARY | | | | | | | | | SAMPLE | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUG | | 71 | | 25.0 | 96 | | 102.5 | 22,925 | 22,308 | 4,968 | 4,879 | | HEML | | 13 | | 18.6 | 61 | | 22.5 | 3,442 | 3,283 | 852 | 833 | | ALDRI
SNAG | | 12 | 8 27.6
2 3.5 | 10.6
29.4 | 26
55 | | 16.8
16.7 | 921
654 | 921 | 296
161 | 296 | | SPRUC | | | 8 6.1 | 19.4 | 32 | | 12.5 | 1,837 | 1,784 | 442 | 436 | | CEDLE | | | 7 1.8 | 24.2 | 70 | | 5.8 | 703 | 684 | 206 | 206 | | TOTA | L | 119 | 9 81.0 | 20.0 | 60 | | 176.8 | 30,481 | 28,981 | 6,926 | 6,651 | | CL: | 68.1
68.1 % | TIMES OU
COE | JT OF 100 THE
FF | VOLUME | WILL BE SAMPLI | | | | OF TREES | REQ. | INF. POP. | | | 1.0 | VAR | | LC |)W | AVG | HIGH | | 5 | 10 | 15 | | DOUG | | 50. | | | 923 | 982 | 1,040 | | | | | | HEML | | | | | | | (47 | | | | | | ALDRI
SNAG | LEAV | 104.
22. | | | 348
31 | 498
34 | 647
37 | | | | | | | LEAV | | 0 8.3 | 1 | | | | | | | | | SNAG
SPRUC
CEDLI | LEAV
CELV
EAV | 22.
133.
125. | 0 8.3
2 50.2
1 50.9 | 1 | 31
1,024
332 | 34
2,058
676 | 37
3,091
1,020 | | | | | | SNAG
SPRUC
CEDLI
TOTA | LEAV
CELV
EAV | 22.
133.
125.
115.: | 0 8.3
2 50.2
1 50.9
5 10.6 | | 31 | 34
2,058 | 37
3,091 | | 533 | 133 | 59 | | SNAG
SPRUC
CEDLI
TOTA
CL: | CELV
EAV
AL | 22.
133.
125.
115.: | 0 8.3 2 50.2 1 50.9 5 10.6 | | 31
,024
332
<i>734</i>
TREES/A | 34
2,058
676
820
ACRE | 3,091
1,020
907 | # | OF PLOTS | REQ. | INF. POP. | | SNAG
SPRUC
CEDLI
TOTA
CL:
SD: | CELV
EAV
AL
68.1 % | 22.
133.
125.
115.:
COE
VAR | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% | | 31
,,024
332
734
TREES/A | 34
2,058
676
820
ACRE
AVG | 37
3,091
1,020
907
HIGH | # | | - | | | SNAG
SPRUC
CEDLI
TOTA
CL:
SD:
DOUG | CELV
EAV
AL
68.1 %
1.0 | 22. 133. 125. 115.: COE VAR 76. | 0 8.3 2 50.2 1 50.9 5 10.6 FF 8.% S.E.% 0 11.0 | | 31
,024
332
734
TREES/A | 34
2,058
676
820
ACRE
AVG
30 | 37
3,091
1,020
907
HIGH
33 | # | OF PLOTS | REQ. | INF. POP. | | SNAG
SPRUC
CEDLI
TOTA
CL:
SD: | CELV
EAV
AL
68.1 %
1.0
GLEAV
EAV | 22.
133.
125.
115.:
COE
VAR | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 | | 31
,,024
332
734
TREES/A | 34
2,058
676
820
ACRE
AVG | 37
3,091
1,020
907
HIGH | # | OF PLOTS | REQ. | INF. POP. | | SNAG
SPRUC
CEDLI
TOTA
CL:
SD:
DOUG
HEML
ALDRI
SNAG | CELV
EAV
AL
68.1 %
1.0
ELEAV
LEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 | | 31
,024
332
734
TREES/A | 34
2,058
676
820
ACRE
AVG
30
12 | 37 3,091 1,020 907 HIGH 33 15 35 5 | # | OF PLOTS | REQ. | INF. POP. | | SNAG
SPRUC
CEDLI
TOTA
CL:
SD:
DOUG
HEML
ALDRI
SNAG
SPRUC | CELV EAV 68.1 % 1.0 ELEAV EAV LEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 | | 31
,024
332
734
TREES/A
DW
27
9
20
2
4 | 34 2,058 676 820 ACRE AVG 30 12 28 4 6 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 | # | OF PLOTS | REQ. | INF. POP. | | SNAG
SPRUC
CEDLI
TOTA
CL:
SD:
DOUG
HEML
ALDRI
SNAG
SPRUC
CEDLI | CELV EAV 68.1 % 1.0 ELEAV EAV LEAV CELV EAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 | | 31
,024
332
734
TREES/A
DW
27
9
20
2
4
0 | 34
2,058
676
820
ACRE
AVG
30
12
28
4
6
2 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 | # | OF PLOTS
5 | REQ.
10 | INF. POP.
15 | | SNAG
SPRUC
CEDLI
TOTA
CL:
SD:
DOUG
HEML
ALDRI
SNAG
SPRUC
CEDLI
TOTA | CELV EAV 1.0 ELEAV LEAV LEAV CELV EAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 | | 31
,024
332
734
TREES/A
DW
27
9
20
2
4
0
74 | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 | | OF PLOTS 5 | REQ.
10 | INF. POP.
15 | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: | CELV EAV 1.0 ELEAV EAV LEAV CELV EAV LEAV 68.1 % | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 | LC | 31
,024
332
734
TREES/A
DW
27
9
20
2
4
0
74
BASAL | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 | | OF PLOTS 5 138 | REQ.
10 | INF. POP.
15
15
INF. POP. | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: | CELV EAV 1.0 ELEAV EAV LEAV CELV EAV 1.0 68.1 % | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% | LC | 31
,024
332
734
TREES/A
DW
27
9
20
2
4
0
74
BASAL A | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH | | OF PLOTS 5 | REQ.
10 | INF. POP.
15 | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG | CELV EAV 1.0 EAV LEAV LEAV CELV EAV 1.0 68.1 % 1.0 68.1 % | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE VAR 64. | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% 9 9.4 | LC | 31
32
734
TREES/A
DW
27
9
20
2
4
0
74
BASAL A
DW
93 | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A
AVG
103 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH 112 | | OF PLOTS 5 138 | REQ.
10 | INF. POP.
15
15
INF. POP. | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: | CELV EAV 1.0 EEAV LEAV CELV EAV 1.0 68.1 % 1.0 68.1 % 1.0 GLEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% 9 9.4 8 21.7 | LC | 31
,024
332
734
TREES/A
DW
27
9
20
2
4
0
74
BASAL A | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH | | OF PLOTS 5 138 | REQ.
10 | INF. POP.
15
15
INF. POP. | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SNAG SPRUC SD: | CELV EAV 1.0 EEAV LEAV CELV EAV 1.0 68.1 % 1.0 EEAV LEAV LEAV LEAV LEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE VAR 64. 150. 189. | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% 9 9.4 8 21.7 1 27.3 1 26.6 | LC | 31 32 734 TREES/A DW 27 9 20 2 4 0 74 BASAL A DW 93 18 12 12 | 34
2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A
AVG
103
23
17
17 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH 112 27 21 21 | | OF PLOTS 5 138 | REQ.
10 | INF. POP.
15
15
INF. POP. | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC SD: SPRUC SD: SPRUC SD: SPRUC SNAG SPRUC | CELV EAV 1.0 EEAV LEAV CELV EAV 1.0 68.1 % 1.0 EEAV LEAV LEAV LEAV CELV EAV LEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE VAR 64. 150. 189. 184. 220. | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% 9 9.4 8 21.7 1 27.3 1 26.6 5 31.8 | LC | 31 32 734 TREES/A DW 27 9 20 2 4 0 74 BASAL A DW 93 18 12 12 9 | 34 2,058 676 820 ACRE AVG 30 12 28 4 6 2 81 AREA/A AVG 103 23 17 17 13 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH 112 27 21 21 16 | | OF PLOTS 5 138 | REQ.
10 | INF. POP.
15
15
INF. POP. | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI | CELV EAV 1.0 ELEAV LEAV CELV EAV 1.0 ELEAV CELV EAV LEAV LEAV CELV EAV LEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE VAR 64. 150. 189. 184. 220. 600. | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.%
9 9.4 8 21.7 1 27.3 1 26.6 5 31.8 0 86.5 | LC | 31 32 734 TREES/A TREES/A OW 27 9 20 2 4 0 74 BASAL A OW 93 18 12 12 9 1 | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A
AVG
103
23
17
17
13
6 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH 112 27 21 21 16 11 | | OF PLOTS 5 138 FOF PLOTS 5 | 34 REQ. 10 | INF. POP.
15
15
INF. POP.
15 | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: TOTA | CELV EAV 1.0 HEAV EAV LEAV 1.0 68.1 % 1.0 68.1 % LEAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE VAR 64. 150. 189. 184. 220. 600. 24 | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% 9 9.4 8 21.7 1 27.3 1 26.6 5 31.8 0 86.5 1 3.5 | LC | 31 32 734 TREES/A OW 27 9 20 2 4 0 74 BASAL A OW 93 18 12 12 9 1 171 | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A
AVG
103
23
17
17
13
6
177 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH 112 27 21 21 16 | # | 138 FOF PLOTS 5 23 | 34 REQ. 10 | 15 15 INF. POP. 15 | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: CEDLI TOTA CL: CEDLI | CELV EAV 1.0 68.1 % 1.0 EAV LEAV CELV EAV 1.0 68.1 % 1.0 ELEAV LEAV LEAV LEAV LEAV LEAV LEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE VAR 64. 150. 189. 184. 220. 600. 24 COE | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% 9 9.4 8 21.7 1 27.3 1 26.6 5 31.8 0 86.5 1 3.5 | LC | 31 32 734 TREES/A TREES/A DW 27 9 20 2 4 0 74 BASAL A DW 93 18 12 12 9 1 171 NET BF/ | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A
AVG
103
23
17
17
13
6
177 | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH 112 27 21 16 11 183 | # | 138 FOF PLOTS 5 23 FOF PLOTS | 34 REO. 10 6 | 15 15 INF. POP. 15 INF. POP. | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SO: CEDLI TOTA CL: SD: CEDLI TOTA CL: SD: CEDLI TOTA | CELV EAV 1.0 68.1 % 1.0 EAV LEAV CELV EAV 1.0 GLEAV LEAV 1.0 GLEAV 1.0 GLEAV LEAV LEAV LEAV LEAV LEAV LEAV LEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE VAR 64. 150. 189. 184. 220. 600. 24 COE VAR | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% 9 9.4 8 21.7 1 27.3 1 26.6 5 31.8 0 86.5 1 3.5 EFF 8.% S.E.% | | 31 32 734 TREES/A DW 27 9 20 2 4 0 74 BASAL A DW 93 18 12 12 9 1 171 NET BF/DW | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A
AVG
103
23
17
17
13
6
177
(ACRE
AVG | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH 112 27 21 16 11 183 | # | 138 FOF PLOTS 5 23 | 34 REQ. 10 | 15 15 INF. POP. 15 | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: CEDLI TOTA CL: CEDLI TOTA CL: CEDLI TOTA CL: CEDLI TOTA | CELV EAV 1.0 ELEAV LEAV CELV EAV 1.0 68.1 % 1.0 ELEAV LEAV LEAV LEAV LEAV LEAV LEAV LEA | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE VAR 64. 150. 189. 184. 220. 600. 24 COE VAR 64. | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% 9 9.4 8 21.7 1 27.3 1 26.6 5 31.8 0 86.5 1 3.5 EFF 8.% S.E.% 3 9.3 | LC LC 20 | 31 32 734 TREES/A DW 27 9 20 2 4 0 74 BASAL A DW 93 18 12 12 9 1 171 NET BF/DW 0,238 2 | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A
AVG
103
23
17
17
13
6
177
'ACRE
AVG | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH 112 27 21 16 11 183 HIGH 24,378 | # | 138 FOF PLOTS 5 23 FOF PLOTS | 34 REO. 10 6 | 15 15 INF. POP. 15 3 INF. POP. | | SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG HEML ALDRI SNAG SPRUC CEDLI TOTA CL: SD: DOUG DOUG TOTA CL: SD: DOUG DOUG TOTA | CELV EAV 1.0 ELEAV CELV EAV LEAV | 22. 133. 125. 115.: COE VAR 76. 154. 187. 228. 290. 676. 58.: COE VAR 64. 150. 189. 184. 220. 600. 24 COE VAR | 0 8.3 2 50.2 1 50.9 5 10.6 EFF 8.% S.E.% 0 11.0 4 22.3 7 27.1 9 33.0 7 41.9 5 97.6 7 8.5 EFF 8.% S.E.% 9 9.4 8 21.7 1 27.3 1 26.6 5 31.8 0 86.5 1 3.5 EFF 8.% S.E.% 3 9.3 4 20.8 | LC LC 20 | 31 32 734 TREES/A DW 27 9 20 2 4 0 74 BASAL A DW 93 18 12 12 9 1 171 NET BF/DW 0,238 2 | 2,058
676
820
ACRE
AVG
30
12
28
4
6
2
81
AREA/A
AVG
103
23
17
17
13
6
177
(ACRE
AVG | 37 3,091 1,020 907 HIGH 33 15 35 5 9 4 88 ACRE HIGH 112 27 21 16 11 183 | # | 138 FOF PLOTS 5 23 FOF PLOTS | 34 REO. 10 6 | INF. POP. 15 INF. POP. 15 INF. POP. | | TC TST | ATS | | | | | STATI
JECT | STICS
PROSP | | | PAGE
DATE 2 | 2
2/9/2008 | |--------|-------|------|-----|-------|--------|---------------|----------------|-------|----------|----------------|---------------| | TWP | RGE | SECT | TRA | СТ | TYP] | E . | ACRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 17 | A4L | EAVE2 | 0002 | ı | 99.90 | 48 | 216 | 1 | W | | CL: | 68.1% | СО | EFF | | NET | BF/ACR | E | | # OF PLO | TS REQ. | INF. POP. | | SD: | 1.0 | VA | R. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | SPRU | ICELV | 251 | 1.0 | 36.2 | 1,138 | 1,784 | 2,430 | | | | | | CEDI | .EAV | 590 |).4 | 85.1 | 102 | 684 | 1,267 | | | | | | TOT | AL | 33 | .3 | 4.8 | 27,588 | 28,981 | 30,373 | | 44 | 11 | 5 | | TC TSTA | ATS | | | | ST
PROJEC | ATIST | TICS
PROSP | | | PAGE
DATE 2 | 1
:/9/2008 | |--|--
--|---|--|--|--|---|--------------------|---------------------------|-------------------------------------|--| | TWP | RGE | SECT | TRACT | | TYPE | AC | RES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 17 | A125 | | 0001 | | 142.70 | 62 | 415 | 1 | W | | | | PLOTS | TREES | S. | TREES PER PLOT | | ESTIMATED
TOTAL
TREES | S | ERCENT
SAMPLE
REES | | | | TOTA | т | 62 | | | 6.7 | | 114225 | | | | | | CRUIS | SE
COUNT | 32 | | | 6.5 | | 20,063 | | 1.0 | | | | COUN
BLAN
100 % | IT
IKS | 30 | 20 |) | 6.7 | | | • | | | | | | | | | STA | ND SUMI | MARY | • | | | · | | | | | SAMPLE
TREES | | AVG
DBH | BOLE
LEN | REL
DEN | BASAL
AREA | GROSS
BF/AC | NET
BF/AC | GROSS
CF/AC | NET
CF/AC | | DOUG | } FIR | | 9 54.9 | | 78 | | 134.4 | 27,554 | 26,347 | 6,175 | 5,982 | | R ALE | | | 3 42.5 | | 49 | | 56.9 | 6,209 | 5,979 | 1,779 | 1,741 | | | MLOCK | | 3 23.5 | | 61 | | 51.8 | 10,033 | 8,907 | 2,308 | 2,113 | | SNAG | | | 4 5.7 | | 36 | | 33.9 | 326 | | 71 | | | CEDL | EAV | 1 | 2 4.6 | 25.1 | 47 | | 15.8 | 1,046 | 998 | 450 | 429 | | S SPR | UCE | | 4 5.4 | 21.9 | 56 | | 14.1 | 1,756 | 1,699 | 502 | 492 | | DOUG | JLEAV | | 7 2.1 | 30.5 | 103 | | 10.5 | 2,493 | 2,471 | 516 | 516 | | SPRU | CELV | | 5 1.5 | 32.3 | 72 | | 8.8 | 1,637 | 1,505 | 365 | 340 | | немі | LEAV | | 1 | 32.0 | 110 | | 2.6 | 764 | 472 | 143 | 95 | | X 11//(V1E | | | | | | | | | 10.000 | | 11,708 | | CON | FIDENC | TIMES O | OF THE SAM
UT OF 100 TH | IPLE | 63
E WILL BE | WITHIN | 328.8
I THE SAMP | 51,817
LE ERROR | 48,378 | 12,309 | 11,708 | | CL:
SD: | FIDENC:
68.1
68.1 %
1.0 | E LIMITS
TIMES O | OF THE SAM
UT OF 100 TH
EFF
R.% S.E.S | IPLE
IE VOLUMI
6 I | E WILL BE
SAMPL
LOW | E TREE
AVG | I THE SAMP
S - BF
HIGH | LE ERROR | 48,378 FOR TREES 5 | | INF. POP. | | CL:
SD: | FIDENC:
68.1
68.1 %
1.0
3 FIR | E LIMITS TIMES OF COLUMN VAI | OF THE SAM
UT OF 100 TE
EFF
R.% S.E.9 | IPLE HE VOLUMI 6 I | E WILL BE
SAMPL
LOW
771 | E TREE
AVG
837 | N THE SAMP S - BF HIGH 902 | LE ERROR | OF TREES | REQ. | INF. POP. | | CL:
SD:
DOUG
R ALI | FIDENCE
68.1
68.1 %
1.0
G FIR
DER
MLOCK | E LIMITS TIMES OF COR VA 74 102 | OF THE SAM
UT OF 100 TE
EFF
R.% S.E.9 | IPLE HE VOLUMI 6 I | E WILL BE
SAMPL
LOW | E TREE
AVG | I THE SAMP
S - BF
HIGH | LE ERROR | OF TREES | REQ. | INF. POP. | | CL:
SD:
DOUG
R ALL
WHEM
SNAG
CEDL | FIDENCE
68.1
68.1 %
1.0
FIR
DER
MLOCK
F | E LIMITS TIMES OF COL VAI 74 102 75 | OF THE SAM
UT OF 100 TE
EFF
R.% S.E.9
.1 7.
.4 14.
.4 16. | IPLE HE VOLUMI 6 I 8 1 1 | SAMPL
.OW
771
174
637 | E TREE
AVG
837
202
759
363 | N THE SAMP S - BF HIGH 902 230 881 441 | LE ERROR | OF TREES | REQ. | INF. POP. | | CL:
SD:
DOUG
R ALL
WHEM | FIDENCE
68.1
68.1 %
1.0
FIR
DER
MLOCK
F | E LIMITS TIMES OF VAI 74 102 75 72 79 | OF THE SAM
UT OF 100 TE
EFF
R.% S.E.9
1.1 7.
1.4 14.
1.4 16.
1.0 21.
1.5 45. | IPLE HE VOLUMI 6 I 8 1 1 1 7 | SAMPL
SAMPL
OW
771
174
637
284
269 | AVG
837
202
759
363
493 | N THE SAMP S - BF HIGH 902 230 881 441 716 | LE ERROR | OF TREES | REQ. | INF. POP. | | CL:
SD:
DOUC
R ALL
WHEM
SNAG
CEDL
S SPR | FIDENCE
68.1
68.1 %
1.0
FIR
DER
MLOCK
F | E LIMITS TIMES O COI VAI 102 75 72 79 47 | OF THE SAM
UT OF 100 THE
EFF
R.% S.E.S.
1.4 14.
1.4 16.
1.0 21.
1.5 45.
1.7 19. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 | SAMPL
COW
771
174
637
284
269
1,121 | E TREE
AVG
837
202
759
363
493
1,391 | N THE SAMP S - BF HIGH 902 230 881 441 716 1,661 | LE ERROR | OF TREES | REQ. | INF. POP. | | CL:
SD:
DOUG
R ALD
WHEN
SNAG
CEDL
S SPR
DOUG | 68.1 % 1.0 3 FIR DER MLOCK 3. EAV UCE GLEAV CELV | E LIMITS
TIMES O
COI
VA
74
102
75
72
79
47
89 | OF THE SAM
UT OF 100 THE
EFF
R.% S.E.9
.1 7.
.4 14.
.4 16.
.0 21.
.5 45.
.7 19.
.5 44. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 | SAMPL
SAMPL
OW
771
174
637
284
269 | AVG
837
202
759
363
493 | N THE SAMP S - BF HIGH 902 230 881 441 716 | LE ERROR | OF TREES | REQ. | INF. POP. | | CL:
SD:
DOUC
R ALL
WHEN
SNAG
CEDL
S SPR
DOUC
SPRUG
HEMI
TOTA | FIDENCE
68.1 %
1.0
FIR
DER
MLOCK
FILEAV
CUCE
GLEAV
CELV
LEAV | E LIMITS TIMES OF VARIABLE TO | OF THE SAM
UT OF 100 THE
EFF
R.% S.E.9
.1 7.
.4 14.
.4 16.
.0 21.
.5 45.
.7 19.
.5 44. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 | SAMPL
COW
771
174
637
284
269
1,121
1,229
580 | E TREE
AVG
837
202
759
363
493
1,391
2,214 | N THE SAMP S - BF HIGH 902 230 881 441 716 1,661 | LE ERROR
| OF TREES 5 | REO.
10 | INF. POP.
15 | | CL:
SD:
DOUG
R ALD
WHEN
SNAG
CEDL
S SPRU
HEMI
TOTA | FIDENCE
68.1 %
1.0
FIR
DER
MLOCK
EAV
UCE
GLEAV
CELV
LEAV
AL
68.1 % | E LIMITS TIMES OF COLUMN COLUM | OF THE SAM
UT OF 100 THE
EFF
R.% S.E.9
.1 7.
.4 14.
.4 16.
.0 21.
.5 45.
.7 19.
.5 44.
.5 7. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 | SAMPL
COW
771
174
637
284
269
1,121
1,229
580
TREES | E TREE
AVG
837
202
759
363
493
1,391
2,214
629 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677 | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
54
INF. POP. | | CL:
SD:
DOUG
R ALD
WHEN
SNAG
CEDL
S SPRU
HEMI
TOTA | FIDENCE
68.1 %
1.0
FIR
DER
MLOCK
EAV
UCE
GLEAV
CELV
LEAV
AL
68.1 %
1.0 | E LIMITS TIMES OF COLUMN COLUM | OF THE SAM
UT OF 100 THE
EFF
R.% S.E.9
.1 7.
.4 14.
.4 16.
.0 21.
.5 45.
.7 19.
.5 44.
.5 7.
EFF
R.% S.E.9 | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES | E
TREE
AVG
837
202
759
363
493
1,391
2,214
629
/ACRE
AVG | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677 | LE ERROR
| OF TREES 5 | REO.
10 | INF. POP.
15
54
INF. POP. | | CL:
SD:
DOUG
R ALD
WHEN
SNAG
CEDL
S SPRU
HEMI
TOTA
CL:
SD:
DOUG | FIDENCE 68.1 68.1 1.0 G FIR DER MLOCK GLEAV CUCE GLEAV CELV LEAV AL 68.1 68.1 68.1 68.1 | E LIMITS TIMES OF COLUMN COLUM | OF THE SAM
UT OF 100 THE
EFF
R.% S.E.9
1.1 7.
1.4 14.
1.4 16.
1.0 21.
1.5 45.
1.7 19.
1.5 44.
1.5 44.
1.5 7.
1.6 EFF
R.% S.E.9 | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 6 I | SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES | E TREE
AVG
837
202
759
363
493
1,391
2,214
629
/ACRE
AVG
55 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
54
INF. POP. | | CL:
SD:
DOUG
R ALE
WHEM
SNAG
CEDL
S SPRU
HEMI
TOTA
CL:
SD:
DOUG
R ALE | FIDENCE 68.1 68.1 1.0 G FIR DER MLOCK CELV LEAV AL 68.1 68.1 68.1 68.1 68.1 68.1 | E LIMITS TIMES OF VAI 74 102 75 72 79 47 89 110 CO VAI 129 158 | OF THE SAM
UT OF 100 THE
EFF
R.% S.E.5
.1 7.
.4 14.
.4 16.
.0 21.
.5 45.
.7 19.
.5 44.
.5 7.
EFF
R.% S.E.9 | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 6 I | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES OW 46 34 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 /ACRE AVG 55 43 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51 | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
54
INF. POP. | | CL: SD: DOUC R ALL SNAG CEDL S SPR DOUC S SPRU HEMI TOTA CL: SD: DOUC R ALL WHEN | FIDENCE 68.1 68.1 1.0 G FIR DER MLOCK CELV LEAV AL 68.1 68.1 68.1 MLOCK GFIR DER MLOCK | E LIMITS TIMES OF VAI 74 102 75 72 79 47 89 110 CO VAI 129 158 178 | OF THE SAM
UT OF 100 THE
EFF
R.% S.E.9
1.1 7.
1.4 14.
1.4 16.
1.0 21.
1.5 45.
1.7 19.
1.5 44.
1.5 45.
1.7 19.
1.5 44.
1.6 20.
1.6 20.
1.6 20.
1.6 20. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 6 I 6 I 6 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES COW 46 34 18 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 /ACRE AVG 55 43 23 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29 | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
54
INF. POP. | | CL: SD: DOUC R ALL WHEM SNAG CEDL S SPR DOUC SPRUC HEMI TOTA CL: SD: DOUC R ALL WHEM SNAG | FIDENCE 68.1 68.1 1.0 G FIR DER MILOCK G LEAV LEAV LEAV AL 68.1 68.1 68.1 MILOCK G FIR DER MILOCK G H H H H H H H H H H H H H H H H H H | COLUMN CO | OF THE SAN UT OF 100 TH EFF R.% S.E.9 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 226 5 21. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 6 I 6 1 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES COW 46 34 18 4 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 /ACRE AVG 55 43 23 6 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7 | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
54
INF. POP. | | CL: SD: DOUC R ALL SNAG CEDL SPRU HEMI TOTA CL: SD: DOUC R ALL WHEN SNAG CEDL CL: SD: CL: SD: CL: SD: CL: CL: CL: CL: CL: CL: CL: CL: CL: CL | FIDENCE 68.1 68.1 68.1 1.0 G FIR DER MLOCK GLEAV LEAV AL 68.1 68.1 1.0 G FIR DER MLOCK GRAV LEAV AL 68.1 68.1 LEAV LEAV AL 68.1 LEAV LEAV AL 68.1 LEAV LEAV AL 68.1 LEAV LEAV AL 68.1 LEAV LEAV AL 68.1 LEAV LEAV AL 68.1 LEAV | E LIMITS TIMES OF COLUMN COLUM | OF THE SAM UT OF 100 TH EFF R.% S.E.9 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 216 206 216 206 217 226 226 23. 47. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 4 1 6 1 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES COW 46 34 18 4 2 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 /ACRE AVG 55 43 23 6 5 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7 | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
54
INF. POP. | | CL: SD: DOUC R ALL WHEN SNAG CEDL S SPRU HEMI TOTA CL: SD: DOUC R ALL WHEN SNAG CEDL S SPRU CL: SD: | FIDENCE 68.1 68.1 68.1 1.0 G FIR DER MLOCK GLEAV CELV LEAV AL 68.1 68.1 68.1 MLOCK GFIR DER MLOCK GFIR DER MLOCK GLEAV LEAV AL 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 | COI VAI 102 75 72 79 47 89 110 COI VAI 129 158 178 166 375 258 | OF THE SAM UT OF 100 TH EFF R.% S.E.9 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 206 216 206 2 | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 6 I 6 1 6 8 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES OW 46 34 18 4 2 4 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 ACRE AVG 55 43 23 6 5 5 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7 | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
54
INF. POP. | | CL: SD: DOUC R ALL SNAG CEDL S SPR DOUC SPRUC HEMI TOTA CL: SD: DOUC R ALL WHEN SNAG CEDL S SPR DOUC R ALL S SPR DOUC R ALL SNAG CEDL S SPR | FIDENCE 68.1 68.1 68.1 1.0 G FIR DER MLOCK GLEAV CELV LEAV AL 68.1 68.1 68.1 MLOCK GFIR DER MLOCK GRAV LEAV AL 68.1 68.1 CELV LEAV AL | COI VAI 102 75 72 79 47 89 110 COI VAI 129 158 178 166 375 258 249 | OF THE SAM UT OF 100 TH EFF R.% S.E.5 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 206 216 207 347 327 347 327 34. | IPLE HE VOLUMI 6 I 7 4 4 5 7 6 I 6 1 6 8 6 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES OW 46 34 18 4 2 4 1 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 ACRE AVG 55 43 23 6 5 5 2 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7
7
7 | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
54
INF. POP. | | CL: SD: DOUC R ALL WHEN SNAG CEDL S SPRU DOUC R ALL WHEN SD: DOUC R ALL WHEN SNAG CEDL S SPRU CL: SD: DOUC R ALL S SPRU CEDL S SPRU CEDL S SPRU CEDL S SPRU CEDL S SPRU CEDL S SPRU | FIDENCE 68.1 68.1 68.1 1.0 69 FIR DER MLOCK 61 EAV EUCE GLEAV LEAV AL 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 | E LIMITS TIMES OF COLUMN COLUM | OF THE SAN UT OF 100 TH EFF R.% S.E.5 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 206 216 206 206 206 206 206 207 318 4 329 3 319 5 38. | IPLE HE VOLUMI 6 I 7 4 4 5 7 4 1 6 1 6 8 6 0 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES OW 46 34 18 4 2 4 1 1 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 ACRE AVG 55 43 23 6 5 5 2 2 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7
7
7
7
3
2 | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
54
INF. POP. | | CL: SD: DOUC R ALL WHEM SNAG CEDL SPRU HEMI TOTA CL: SD: DOUC R ALL WHEM SNAG CEDL S SPR DOUC SPRU CL: SD: DOUC R ALL SNAG CEDL S SPR | FIDENCE 68.1 68.1 68.1 1.0 69 FIR DER MLOCK 61 EAV CELV LEAV AL 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 | COI VAI 102 75 72 79 47 89 110 COI VAI 129 158 178 166 375 258 249 | OF THE SAN UT OF 100 TH EFF R.% S.E.5 .1 74 144 160 211.5 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 206 216 207 317 327 327 337 347 357 357 367 367 367 37 387 387 387 387 387 387 38. | IPLE HE VOLUMI 6 I 7 4 4 5 7 4 1 6 1 6 8 6 0 7 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES OW 46 34 18 4 2 4 1 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 ACRE AVG 55 43 23 6 5 5 2 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7
7
7 | LE ERROR
| OF TREES 5 488 FOR PLOTS | 122
3 REQ. | INF. POP.
15
15
1NF. POP.
15 | | CL: SD: DOUC SPRU HEMI TOTA CEDL SPRU HEMI TOTA CL: SD: DOUC R ALL WHEN SNAG CEDL SPRU HEMI TOTA CL: SD: DOUC R ALL WHEN SNAG CEDL S SPR DOUC SPRU HEMI TOTA | FIDENCE 68.1 68.1 68.1 1.0 69 FIR DER MLOCK 61 EAV CELV LEAV AL 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 | E LIMITS TIMES O COI VAI 74 102 75 47 89 110 COI VAI 129 158 178 166 375 258 249 299 447 51 | OF THE SAN UT OF 100 TH EFF R.% S.E.5 .1 74 144 160 211.5 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 206 216 207 317 327 327 337 347 357 357 367 367 367 37 387 387 387 387 387 387 38. | IPLE HE VOLUMI 6 I 7 4 4 5 7 4 1 6 1 6 8 6 0 7 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES COW 46 34 18 4 2 4 1 0 131 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 (ACRE AVG 55 43 23 6 5 5 2 2 0 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7
7
7
3
2
1
150 | LE ERROR | 488 FOF PLOTS | 122
3 REQ.
10
27 | INF. POP. 15 | |
CL: SD: DOUC R ALL SNAG CEDL SPRU HEMI TOTA CL: SSPR DOUC R ALL SNAG CEDL SPRU HEMI TOTA CL: CEDL CEDL CEDL CEDL CEDL CEDL CEDL CEDL | FIDENCE 68.1 68.1 % 1.0 G FIR DER MLOCK GLEAV CELV LEAV AL 68.1 % 1.0 G FIR DER MLOCK GLEAV LEAV AL 68.1 % LEAV LEAV AL LEAV LEAV LEAV AL LEAV LEAV | E LIMITS TIMES OF COLUMN COLUM | OF THE SAN UT OF 100 TH EFF R.% S.E.9 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 206 216 207 317 327 337 347 358 468 6. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 6 1 6 8 6 0 7 6 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES COW 46 34 18 4 2 4 1 0 131 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 /ACRE AVG 55 43 23 6 5 5 2 2 0 141 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7
7
7
3
2
1
150 | LE ERROR | 488 FOF PLOTS 5 | 122
3 REQ.
10
27 | INF. POP. 15 54 INF. POP. 15 INF. POP. | | CL: SD: DOUC R ALL WHEM SNAG CEDL SPRU HEMI TOTA CL: SD: CEDL SPRU CL: SD: CEDL CL: CL: CEDL CL: CL: CL: CC: CC: CC: CC: CC: CC: CC | FIDENCE 68.1 68.1 1.0 G FIR DER MLOCK CELV CELV LEAV AL 68.1 68.1 MLOCK GREAV LEAV AL 68.1 68.1 MLOCK GREAV LEAV AL | E LIMITS TIMES OF COLUMN COLUM | OF THE SAM UT OF 100 TH EFF R.% S.E.5 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 226 216 31 478 4 329 0 319 5 387 568 6. EFF R.% S.E.* | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 6 1 6 8 6 0 7 6 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES OW 46 34 18 4 2 4 1 0 131 BASAL | E TREE AVG 837 202 759 363 493 1,391 2,214 629 ACRE AVG 55 43 23 6 5 5 2 2 0 141 AREA/A | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7
7
7
3
2
1
150 | LE ERROR | 488 40F PLOTS 5 | 122
3 REQ.
10
27
3 REQ. | INF. POP. 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | | CL: SD: DOUC R ALL WHEM SNAG CEDL SPRU HEMI TOTA CL: SD: CEDL SPRU CL: SD: CEDL SPRU CL: SD: CEDL SPRU CL: SD: CEDL SPRU CL: SD: CEDL SPRU CEDL SNAG CEDL SNAG CEDL SNAG CEDL SNAG CEDL SNAG CEDL SNAG CEDL SSPRU CEDL SSPRU CEDL SSPRU CEDL SPRU | FIDENCE 68.1 68.1 68.1 1.0 G FIR DER MLOCK GLEAV CELV LEAV AL 68.1 68.1 MLOCK GLEAV LEAV LEAV AL 68.1 68.1 MLOCK GLEAV LEAV AL 68.1 MLOCK GLEAV LEAV LEAV AL 68.1 MLOCK GLEAV LEAV LEAV AL 68.1 MLOCK GLEAV AL 68.1 MLOCK GLEAV AL 68.1 MLOCK GLEAV AL | E LIMITS TIMES OF COLUMN COLUM | OF THE SAM UT OF 100 TH EFF R.% S.E.5 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 226 216 3 478 4 329 0 319 5 387 1 568 6. EFF R.% S.E.9 .7 1 568 6. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 6 1 6 8 6 0 7 6 7 7 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES OW 46 34 18 4 2 4 1 0 131 BASAL OW | E TREE AVG 837 202 759 363 493 1,391 2,214 629 ACRE AVG 55 43 23 6 5 5 2 2 0 141 AREA/A AVG | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7
7
7
3
2
1
150
ACRE
HIGH | LE ERROR | 488 40F PLOTS 5 | 122
3 REQ.
10
27
3 REQ. | INF. POP. 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | | CL: SD: DOUC R ALL WHEN SNAG CEDL SPRU HEMI TOTA CL: SD: DOUC R ALL WHEN SNAG CEDL SPRU CL: SD: DOUC R ALL SNAG CEDL S SPR DOUC R ALL SNAG CEDL S SPR DOUC R ALL S SPR DOUC R ALL S SPR DOUC R ALL S SPR DOUC R ALL S SPR DOUC R ALL | FIDENCE 68.1 68.1 68.1 1.0 G FIR DER MLOCK GLEAV CELV LEAV AL 68.1 68.1 MLOCK GLEAV LEAV LEAV AL 68.1 68.1 MLOCK GLEAV LEAV AL 68.1 MLOCK GLEAV LEAV LEAV AL 68.1 MLOCK GLEAV LEAV LEAV AL 68.1 MLOCK GLEAV AL 68.1 MLOCK GLEAV AL 68.1 MLOCK GLEAV AL | E LIMITS TIMES OF COLUMN COLUM | OF THE SAN UT OF 100 TH EFF R.% S.E.5 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 216 207 316 207 317 327 337 347 358 4 328 6. EFF R.% S.E.9 .9 319 19 | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 4 1 6 1 6 8 6 0 7 5 | SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES OW 46 34 18 4 2 4 1 0 131 BASAL OW 116 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 ACRE AVG 55 43 23 6 5 5 2 2 0 141 AREA/A AVG 134 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7
7
7
3
2
1
150
ACRE
HIGH
153 | LE ERROR | 488 40F PLOTS 5 | 122
3 REQ.
10
27
3 REQ. | INF. POP. 15 54 INF. POP. 15 INF. POP. | | CL: SD: DOUC R ALL WHEM SNAG CEDL SPRU HEMI TOTA CL: SD: DOUC R ALL WHEM SNAG CEDL SPRU CL: SD: DOUC R ALL SONAG CEDL SON | FIDENCE 68.1 68.1 68.1 1.0 68.1 FIRENCE FIRENCE FIRENCE GLEAV LEAV AL 68.1 68.1 68.1 LO GFIR DER MLOCK GLEAV LEAV AL 68.1 68.1 GFIR DER MLOCK GLEAV LEAV AL 68.1 MLOCK GLEAV LEAV AL 68.1 MLOCK GREAV LEAV AL 68.1 MLOCK | E LIMITS TIMES OF COLUMN COLUM | OF THE SAN UT OF 100 TH EFF R.% S.E.5 .1 74 144 160 215 457 195 445 7. EFF R.% S.E.9 .1 166 206 206 206 216 207 317 327 327 337 347 327 358 4 328 6. EFF R.% S.E.9 .8 6. EFF R.% S.E.9 .9 381 568 6. EFF R.% S.E.9 .8 139 198 22. | IPLE HE VOLUMI 6 I 8 1 1 7 4 4 5 7 4 1 6 1 6 8 6 0 7 6 7 7 0 1 | E WILL BE SAMPL OW 771 174 637 284 269 1,121 1,229 580 TREES OW 46 34 18 4 2 4 1 0 131 BASAL LOW 116 46 | E TREE AVG 837 202 759 363 493 1,391 2,214 629 ACRE AVG 55 43 23 6 5 5 2 2 0 141 AREA/A AVG 134 57 | S - BF
HIGH
902
230
881
441
716
1,661
3,199
677
HIGH
64
51
29
7
7
7
7
3
2
1
150
ACRE
HIGH
153
68 | LE ERROR | 488 40F PLOTS 5 | 122
3 REQ.
10
27
3 REQ. | INF. POP.
15
54
INF. POP.
15 | | TC TST | ATS | | | | | STATIS
JECT | TICS
PROSP | | | PAGE
DATE | 2
2/9/2008 | |--------|--------------|-------------|------|-------|--------|----------------|---------------|-------|------------|--------------|---------------| | TWP | RGE | SECT | TRA | CT | TYP | E A | CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 17 | A125 | 5 | 0001 | | 142.70 | 62 | 415 | 1 | W | | CL: | 68.1% | CO] | EFF | | BASA | AL AREA/ | ACRE | | # OF PLC | TS REQ. | INF. POP. | | SD: | 1.0 | VAI | R. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | S SPR | UCE | 252 | .4 | 32.0 | 10 | 14 | 19 | | | | | | DOUG | GLEAV | 244 | .7 | 31.0 | 7 | 11 | 14 | | | | | | SPRU | CELV | 255 | .8 | 32.5 | 6 | 9 | 12 | | | | | | HEMI | LEAV | 447 | .1 | 56.7 | 1 | 3 | 4 | | | | | | TOTA | AL | <i>39</i> . | 3 | 5.0 | 312 | 329 | 345 | | 62 | 15 | 7 | | CL: | 68.1 % | CO | EFF | | NET | BF/ACRE | | 1 | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VA | R.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | G FIR | 105 | .0 | 13.3 | 22,837 | 26,347 | 29,857 | | | | | | R ALI | DER | 149 | .1 | 18.9 | 4,848 | 5,979 | 7,109 | | | | | | WHE | MLOCK | 177 | .1 | 22.5 | 6,905 | 8,907 | 10,908 | | | | | | SNAG | } | | | | | | | | | | | | CEDL | EAV | 432 | .0 | 54.8 | 451 | 998 | 1,546 | | | | | | S SPR | UCE | 256 | .7 | 32.6 | 1,146 | 1,699 | 2,252 | | | | | | DOUG | GLEAV | 240 | .7 | 30.5 | 1,716 | 2,471 | 3,226 | | | | | | SPRU | CELV | 260 | .2 | 33.0 | 1,008 | 1,505 | 2,002 | | | | | | HEMI | LEAV | 447 | .1 | 56.7 | 204 | 472 | 739 | | | | | | TOTA | AL | 51. | 9 | 6.6 | 45,191 | 48,378 | 51,565 | | 108 | 27 | 12 | | TC TSTATS | | | | | ST.
PROJEC | ATIST | TICS
PROSP | | | PAGE
DATE 2 | 1
/9/2008 | |--|---|---|--|--------------|--|---|---|--------------|---------------------------|-------------------|------------------------------------| | ΓWP RGE | SECT | TR | ACT | | TYPE | AC | RES | PLOTS | TREES | CuFt | BdFt | | 04N 08W | 17 | A4 | ı. | | 0002 | | 99.90 | 48 | 370 | 11 | W | | | PLOTS | ٠ | TREES | | TREES PER PLOT | | ESTIMATED
TOTAL
TREES | S. | ERCENT
AMPLE
REES | | | | TOTAL | 4 | | 370 | | 7.7 | | TREES | | ICLES | | | | CRUISE | 2 | | 207 | | 7.7 | | 15,675 | | 1.3 | | | | DBH COUNT | _ | • | 207 | | , | | 15,075 | | 1.5 | | | | REFOREST | | | | | | | | | | | | | COUNT | 2 | 0 | 145 | | 7.3 | | | | | | | | BLANKS | | | | | | | | | | | | | 100 % | | | | | | | | | | | | | | | | | STA | ND SUMN | IARY | | | | | | | | SAMPL | E | TREES | AVG | BOLE | REL | BASAL | GROSS | NET | GROSS | NET | | | TREE | S | /ACRE | DBH | LEN | DEN | AREA | BF/AC | BF/AC | CF/AC | CF/AC | | DOUGLEAV | | 70 | 29.9 | 25.0 | 96 | | 101.7 | 23,265 | 22,636 | 5,068 | 4,979 | | DOUG FIR | | 49 | 40.4 | 17.5 | 75 | | 67.5 | 11,930 | 11,578 | 2,938 | 2,897 | | R ALDER | | 29 | 27.5 | 15.3 | 46 | | 35.0 | 3,501 | 3,265 | 1,006 | 962 | | HEMLEAV | | 13 | 12.0 | 18.6 | 61 | | 22.5 | 3,442 | 3,283 | 852 | 833 | | ALDRLEAV
SNAG | | 8
13 | 29.5
3.6 | 11.0
29.9 | 26
54 | | 19.6
17.5 | 1,070
298 | 1,053 | 355 | 352 | | SPRUCELV | | 8 | 3.6
6.5 | 29.9
19.4 | 34
32 | | 17.5 | 1,959 | 1,903 | 472 | 466 | | WHEMLOCK | | 9 | 5.3 | 20.7 | 77 | | 12.5 | 2,542 | 2,463 | 586 | 574 | | CEDLEAV | | 7 | 1.8 | 24.2 | 70 | | 5.8 | 732 | 714 | 215 | 215 | | S SPRUCE | | 1 | .4 | 36.0 | 83 | | 2.5 | 428 | 428 | 109
 109 | | TOTAL | 2 | 07 | 156.9 | 18.7 | 61 | | 297.9 | 49,167 | 47,322 | 11,677 | 11,386 | | CONFIDEN
68.1 | | | | | E WILL BE | WITHIN | THE SAMP | LE ERROR | | | | | CL: 68.1 %
SD: 1.0 | TIMES C | OUT C
DEFF
AR.% | OF 100 THE
S.E.% | VOLUME | SAMPL! | E TREE
AVG | S - BF
HIGH | | OF TREES | REQ.
10 | INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV | TIMES C | OUT C
DEFF
AR.%
8.8 | S.E.%
5.8 | VOLUME | SAMPLE
OW
934 | E TREE
AVG
992 | S - BF
HIGH
1,050 | | | | | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR | TIMES C | OUT C
DEFF
AR.%
8.8
1.3 | S.E.%
5.8
11.6 | VOLUME | SAMPL
LOW
934
394 | E TREE
AVG
992
446 | S - BF
HIGH
1,050
498 | | | | | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER | CC VA 4 8 6 | DEFF
AR.%
8.8
1.3
9.0 | S.E.%
5.8
11.6
13.0 | VOLUME | SAMPL
OW
934
394
126 | E TREE
AVG
992
446
145 | S - BF
HIGH
1,050
498
164 | | | | | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV | TIMES COVA | DEFF
AR.%
8.8
1.3
9.0
4.3 | S.E.%
5.8
11.6
13.0
30.1 | VOLUME | SAMPL
LOW
934
394 | E TREE
AVG
992
446
145
498 | S - BF
HIGH
1,050
498
164
647 | | | | | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER | TIMES COVA | DEFF
AR.%
8.8
1.3
9.0 | S.E.%
5.8
11.6
13.0 | VOLUME | SAMPL
OW
934
394
126
348 | E TREE
AVG
992
446
145 | S - BF
HIGH
1,050
498
164 | | | | | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV | VA 4 8 6 10 5 | DEFF
AR.%
8.8
1.3
9.0
4.3 | S.E.%
5.8
11.6
13.0
30.1 | VOLUME | SAMPL
OW
934
394
126
348 | E TREE
AVG
992
446
145
498 | S - BF
HIGH
1,050
498
164
647 | | | | | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK | TIMES C VA 4 8 6 10 5 | DEFF
AR.%
8.8
1.3
9.0
4.3
3.5 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 | VOLUME | SAMPLE
.OW
934
394
126
348
32
1,024
504 | E TREE
AVG
992
446
145
498
40
2,058
613 | S - BF
HIGH
1,050
498
164
647
48
3,091
723 | | | | | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV | TIMES C VA 4 8 6 10 5 | DEFF
AR.%
8.8
1.3
9.0
4.3
3.5 | S.E.%
5.8
11.6
13.0
30.1
20.2 | VOLUME | SAMPL:
.OW
934
394
126
348
32
1,024 | E TREE
AVG
992
446
145
498
40
2,058 | S - BF
HIGH
1,050
498
164
647
48
3,091 | | | | | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE | TIMES C
VA
4
8
6
10
5
13
5
14 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 | VOLUME | SAMPLE
.OW
934
394
126
348
32
1,024
504
325 | E TREE
AVG
992
446
145
498
40
2,058
613
776 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226 | | 5 | 10 | 1: | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL | TIMES C VA 4 8 6 10 5 13 5 14 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 | VOLUME | SAMPLE
934
394
126
348
32
1,024
504
325
577 | E TREE
AVG
992
446
145
498
40
2,058
613
776 | S - BF
HIGH
1,050
498
164
647
48
3,091
723 | # | 5
627 | 10
157 | 1 <u>:</u>
70 | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE | TIMES C VA 4 8 6 10 5 13 5 14 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 | L | SAMPLE
.OW
934
394
126
348
32
1,024
504
325 | E TREE
AVG
992
446
145
498
40
2,058
613
776 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226 | # | 5 | 10
157 | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % | TIMES C VA 4 8 6 10 5 13 5 14 125 CC VA 7 | DUT C
DEFF
AR %
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
DEFF
6.7 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 | L | SAMPLE
.OW
934
394
126
348
32
1,024
504
325
577
TREES/
.OW | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33 | # | 5
627
OF PLOTS | 10
157
REQ. | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR | TIMES C VA 4 8 6 10 5 13 5 14 12: CC VA 7 13 | DUT C
DEFF
AR %
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
5.3
DEFF
AR %
6.7
9.2 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 | L | SAMPLE
.OW
934
394
126
348
32
1,024
504
325
577
TREES/
.OW
27
32 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49 | # | 5
627
OF PLOTS | 10
157
REQ. | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER | TIMES C VA 4 8 6 10 5 13 5 14 123 CC VA 7 13 12 | DUT C
DEFF
AR %
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
5.3
DEFF
AR %
6.7
9.2
5.2 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 | L | SAMPLE
.OW
934
394
126
348
32
1,024
504
325
577
TREES/OW
27
32
23 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33 | # | 5
627
OF PLOTS | 10
157
REQ. | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRIEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV | TIMES C VA 4 8 6 10 5 13 5 14 123 CC VA 7 13 12 15 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
5.3
DEFF
AR.%
6.7
9.2
5.2
4.4 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 | L | SAMPLE
.OW
934
394
126
348
32
1,024
504
325
577
TREES/OW
27
32
23
9 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15 | # | 5
627
OF PLOTS | 10
157
REQ. | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV | TIMES C VA 4 8 6 10 5 13 5 14 123 CC VA 7 13 12 15 19 | DUT C
DEFF
AR %
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
5.3
DEFF
AR %
6.7
9.2
5.2
4.4 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 | L | SAMPLE
.OW
934
394
126
348
32
1,024
504
325
577
TREES/.
.OW
27
32
23
9
21 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38 | # | 5
627
OF PLOTS | 10
157
REQ. | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG | TIMES C VA 4 8 6 10 5 13 5 14 123 CC VA 7 13 12 15 19 22 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
5.3
DEFF
AR.%
6.7
9.2
5.2
4.4
6.2
3.2 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 32.2 | L | SAMPLE
.OW
934
394
126
348
32
1,024
504
325
577
TREES/OW
27
32
23
9 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 4 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38
5 | # | 5
627
OF PLOTS | 10
157
REQ. | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV | TIMES C VA 4 8 6 10 5 13 5 14 123 CC VA 7 13 12 15 19 22 27 | DUT C
DEFF
AR %
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
5.3
DEFF
AR %
6.7
9.2
5.2
4.4 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 | L | SAMPLE .OW 934 394 126 348 32 1,024 504 325 577 TREES/.OW 27 32 23 9 21 2 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38 | # | 5
627
OF PLOTS | 10
157
REQ. | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV | TIMES C VA 4 8 6 10 5 13 5 14
123 CC VA 7 13 12 15 19 22 27 24 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
5.3
DEFF
AR.%
6.7
9.2
5.2
4.4
6.2
3.2
3.8 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 32.2 39.5 | L | SAMPLE OW 934 394 126 348 32 1,024 504 325 577 TREES/ .OW 27 32 23 9 21 2 4 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 4 6 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38
5
9 | # | 5
627
OF PLOTS | 10
157
REQ. | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK WHEMLOCK WHEMLOCK CEDLEAV | TIMES C VA 4 8 6 10 5 13 5 14 123 CC VA 7 13 12 15 19 22 27 24 67 39 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
5.3
DEFF
6.7
9.2
5.2
4.4
6.2
3.2
6.2
6.5
11.4 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 32.2 39.5 35.5 | L | SAMPLE
OW 934 394 126 348 32 1,024 504 325 577 TREES/ OW 27 32 23 9 21 2 4 3 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 4 6 5 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38
5
9
7 | # | 5
627
OF PLOTS
5 | 10
157
REQ. | 1:
70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV | TIMES C VA 4 8 6 10 5 13 5 14 123 CC VA 7 13 12 15 19 22 27 24 67 39 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
5.3
DEFF
AR.%
6.7
9.2
5.2
4.4
6.2
3.2
3.8
6.2
6.5 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 32.2 39.5 35.5 97.6 | L | SAMPLE
OW 934 394 126 348 32 1,024 504 325 577 TREES/ OW 27 32 23 9 21 2 4 3 0 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 4 6 5 2 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38
5
9
7
4 | # | 5
627
OF PLOTS | 10
157
REQ. | 70
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % | TIMES C VA 48 66 100 5 13 5 14 123 CC VA 7 13 12 15 19 22 27 24 67 39 48 CC | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
5.3
DEFF
AR.%
6.7
9.2
5.2
4.4
6.2
3.3.2
3.8
6.2
16.5
11.4
8.7
DEFF | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 32.2 39.5 35.5 97.6 56.4 7.0 | L | SAMPLE OW 934 394 126 348 32 1,024 504 325 577 TREES/ OW 27 32 23 9 21 2 4 3 0 0 146 BASAL | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 4 6 5 2 0 157 AREA/A | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38
5
9
7
4
1
168 | # | 5
627
OF PLOTS
5 | 157
REQ.
10 | 1:
70
INF. POP.
1. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 | TIMES C VA 48 66 100 5 133 5 14 122 CC VA 7 13 12 15 19 22 27 24 67 39 48 CC VA | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
5.3
DEFF
AR.%
6.7
9.2
5.2
4.4
6.2
3.2
3.8
6.2
16.5
11.4
8.7
DEFF | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 32.2 39.5 35.5 97.6 56.4 7.0 S.E.% | L | SAMPLE OW 934 394 126 348 32 1,024 504 325 577 TREES/ .OW 27 32 23 9 21 2 4 3 0 0 146 BASAL .OW | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 4 6 5 2 0 157 AREA/A AVG | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38
5
9
7
4
1
168
ACRE
HIGH | # | 5
627
OF PLOTS
5 | 157
REQ.
10 | 70
INF. POP.
1.
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRIEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV ALDRIEAV SNAG SPRUCELV WHEMLEAV ALDRIEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV | TIMES C VA 4 8 6 10 5 13 5 14 123 CC VA 7 13 12 15 19 22 27 24 67 39 46 CC VA 66 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
5.3
DEFF
AR.%
6.7
9.2
5.2
4.4
6.2
3.2
3.8
6.2
16.5
11.4
8.7
DEFF | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 32.2 39.5 35.5 97.6 56.4 7.0 S.E.% 9.4 | L | SAMPLE OW 934 394 126 348 32 1,024 504 325 577 TREES/ .OW 27 32 23 9 21 2 4 3 0 0 146 BASAL .OW 92 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 4 6 5 2 0 157 AREA/A AVG 102 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38
5
9
7
4
1
168
ACRE
HIGH | # | 5 627 OF PLOTS 5 | 10 157 REQ. 10 | 70
INF. POP.
1.
INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRIEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV ALDRIEAV SNAG SPRUCELV WHEMLEAV ALDER HEMLEAV ALDER HEMLEAV ALDRIEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR | TIMES C VA 4 8 6 10 5 13 5 14 12: CC VA 7 13 12 15 19 22 27 24 67 39 46 CC VA 6 12 | DUT C
DEFF
AR %
8.8
1.3
9.0
4.3
3.5
3.2
0.7
2.8
6.7
9.2
5.2
4.4
6.2
3.2
3.8
6.2
3.2
6.5
1.4
8.8,7
DEFF
AR %
5.4
4.4,2 | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 32.2 39.5 35.5 97.6 56.4 7.0 S.E.% 9.4 17.9 | L | SAMPLE OW 934 394 126 348 32 1,024 504 325 577 TREES/ .OW 27 32 23 9 21 2 4 3 0 0 146 BASAL .OW 92 55 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 4 6 5 2 0 157 AREA/A AVG 102 68 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38
5
9
7
4
1
168
ACRE
HIGH
111
80 | # | 5 627 OF PLOTS 5 | 10 157 REQ. 10 | 70 INF. POP. 1: INF. POP. | | CL: 68.1 % SD: 1.0 DOUGLEAV DOUG FIR R ALDER HEMLEAV ALDRIEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV ALDRIEAV SNAG SPRUCELV WHEMLEAV ALDRIEAV SNAG SPRUCELV WHEMLOCK CEDLEAV S SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUGLEAV | TIMES C VA 4 8 6 10 5 13 5 14 12: CC V/ 7 13 12 15 19 22 27 24 67 39 46 CC V/ 6 12 11 | DUT C
DEFF
AR.%
8.8
1.3
9.0
4.3
3.5
5.3
DEFF
AR.%
6.7
9.2
5.2
4.4
6.2
3.2
3.8
6.2
16.5
11.4
8.7
DEFF | S.E.% 5.8 11.6 13.0 30.1 20.2 50.2 17.9 58.1 8.7 S.E.% 11.1 20.1 18.1 22.3 28.3 32.2 39.5 35.5 97.6 56.4 7.0 S.E.% 9.4 | L | SAMPLE OW 934 394 126 348 32 1,024 504 325 577 TREES/ .OW 27 32 23 9 21 2 4 3 0 0 146 BASAL .OW 92 | E TREE AVG 992 446 145 498 40 2,058 613 776 632 ACRE AVG 30 40 28 12 29 4 6 5 2 0 157 AREA/A AVG 102 | S - BF
HIGH
1,050
498
164
647
48
3,091
723
1,226
687
HIGH
33
49
33
15
38
5
9
7
4
1
168
ACRE
HIGH | # | 5 627 OF PLOTS 5 | 10 157 REQ. 10 | | | TC TSTA | ATS | | | S
PROJ | TATIS
ECT | TICS
PROSP | | | PAGE
DATE | 2
2/9/2008 | |---------|---------------|----------|-------|-----------|--------------|---------------|-------|------------|--------------|---------------| | TWP | RGE | SECT TRA | CT | TYPE | A (| CRES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 17 A4 | | 0002 | | 99.90 | 48 | 370 | 1 | W | | CL: | 68.1% | COEFF | | BASA | L AREA/ | ACRE | | # OF PLO | TS REQ. | INF. POP | | SD: | 1.0 | VAR. | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | ALDR | LEAV | 193.2 | 27.9 | 14 | 20 | 25 | • | | | | | SNAG | | 175.8 | 25.4 | 13 | 18 | 22 | | | | | | SPRUC | CELV | 208.3 | 30.0 | 9 | 13 | 17 | | | | | | WHEN | MLOCK | 230.2 | 33.2 | 8 | 13 | 17 | | | | | | CEDLE | EAV | 600.0 | 86.5 | 1 | 6 | 11 | | | | | | S SPRI | UCE | 391.4 | 56.4 | 1 | 3 | 4 | | | | | | TOTA | L | 30.3 | 4.4 | 285 | 298 | 311 | | 37 | 9 | 4 | | CL: | 68.1 % | COEFF | | NET I | BF/ACRE | | | # OF PLOTS | REQ. | INF. POP. | | SD: | 1.0 | VAR.% | S.E.% | LOW | AVG | HIGH | | 5 | 10 | 15 | | DOUG | EEAV | 65.0 | 9.4 | 20,515 | 22,636 | 24,756 | | | | | | DOUG | FIR | 126.4 | 18.2 | 9,467 | 11,578 | 13,688 | | | | | | R ALD | DER | 120.8 | 17.4 | 2,696 | 3,265 | 3,834 | | | | - | | HEML | EAV | 144.4 | 20.8 | 2,600 | 3,283 | 3,967 | | | | | | ALDR | LEAV | 189.3 | 27.3 | 765 | 1,053 | 1,340 | | | | | | SNAG | | | | | | | | | | | | SPRUG | CELV | 236.8 | 34.1 | 1,253 | 1,903 | 2,553 | | | | | | WHEN | <i>I</i> LOCK | 238.3 | 34.4 | 1,616 | 2,463 | 3,309 | | | | | | CEDLI | EAV | 571.3 | 82.4 | 126 | 714 | 1,302 | | | | | | S SPR | UCE | 391.4 | 56.4 | 186 | 428 | 670 | | | | | | TOTA | IL. | 44.9 | 6.5 | 44,260 | 47,322 | 50,384 | | 80 | 20 | 9 | Stand Table Summary TC TSTNDSUM **PROSP** Project T04N R08W S17 T0002 T04N R08W S17 T0002 Page: 1 Rge Sec Tract Type Acres **Plots** Sample Trees Twp Date: 02/09/200 0002 99.90 04N 08W17 **A4LEAVE2** 48 119 Time: 3:49:22PM Αv Net Net Average Log Totals S Sample FF Ht Trees/
BA/ Net Tons/ Cu.Ft. Bd.Ft. Logs Net T DBH Trees Cu.Ft. Bd.Ft. Acre Acre **MBF** 16' Tot Acre Acre Tons Cunits Spc Acre Acre DL 10 1 83 68 2.647 1.44 2.65 14.0 50.0 37 132 37 13 DL 17 2 90 115 1.832 2.89 3.66 36.0 137.5 132 504 132 50 DL 18 1 90 118 .817 1.44 2.45 27.0 103.3 66 253 66 25 19 3 91 2.200 4.33 6.60 30.6 122.2 202 807 201 81 DL 116 133 DL 20 2 85 119 1.323 2.89 3.97 33.5 130.0 516 133 52 21 133 .600 1.44 1.80 40.3 156.7 73 282 73 28 DL1 85 22 126 2.188 5.77 6.02 45.9 195.5 276 1,176 276 117 4 89 DL 23 3 130 1.501 4.33 3.00 61.3 270.0 184 DL 89 184 811 81 DL 24 6 88 128 2.757 8.66 8.27 51.3 220.6 425 1,824 424 182 25 .424 1.44 50.0 220.0 280 63 DL 1 86 115 1.27 64 28 DL 26 6 86 138 2.349 8.66 7.05 64.5 278.3 455 1,962 454 196 140 2.905 11.55 69.3 312.5 2,269 503 227 27 8 86 7.26 503 DL 28 134 1.013 71.9 323.3 218 982 98 3 4,33 3.04 218 DL 86 131 .629 75.3 368.3 DL 29 2 90 2.89 1.89 142 696 142 69 DL 30 5 88 129 1.471 7.22 3.53 90.4 437.5 319 1,544 319 154 DL 31 3 88 140 .826 4.33 2.48 88.6 432.2 220 1,071 219 107 DL. 32 3 90 138 .775 4.33 2.33 97.2 491.1 226 1,143 226 114 33 147 1.458 102.2 502.6 472 2,321 472 232 DL 6 86 8.66 4.62 92.5 468.3 127 127 DL 34 2 88 120 .458 2.89 1.37 643 64 2 102.0 505.0 132 132 DL35 88 125 .432 2.89 1.30 655 65 36 4 86 138 .817 5.77 2.86 91.9 484.3 263 1,385 262 138 DL .58 129.0 656.7 75 75 DL37 1 85 136 .193 1.44 381 38 39 1 112 .174 1.44 .52 124.0 653.3 65 341 65 34 DL 89 143.0 71 331 71 40 148 1.44 .50 666.7 33 DL 1 88 .165 DL Totals 71 87 124 29.955 102.50 79.01 61.7 282.4 4,879 22,308 4,874 2,229 2.204 2.20 24.0 70.0 53 53 HL12 1 85 66 1.73 154 15 HL14 1 90 91 1.619 1.73 3.24 20.0 75.0 65 243 65 24 HL 15 1 89 99 1.410 1.73 2.82 25.0 100.0 71 282 70 28 1.240 25.5 90.0 63 223 63 22 HL16 1 82 85 1.73 2.48 18 3 86 56 2.938 5.19 3.92 33.5 100.0 131 392 131 39 HL22 43.3 85 328 HL88 111 .656 1.73 1.97 166.7 85 33 1 23 53 192 1 85 .600 1.73 1.20 44.5 160.0 53 19 HL64 28 1 88 111 .405 1.73 1.21 68.7 330.0 83 401 83 40 HI. 30 1 84 97 .353 1.73 .71 95.0 395.0 67 279 67 28 HL.93 108 549 107 HL32 1 90 146 .310 1.73 115.7 590.0 55 38 1 104 .220 1.73 .44 122.5 550.0 54 242 54 24 HL81 Totals 11.953 22.50 39.5 155.5 833 3,283 832 328 HL 13 86 80 21.11 1 20 3.537 1.56 3.54 6.0 20.0 21 71 21 7 SL 9 69 20 1.56 143 SL 1 88 66 .716 .72 64.0 200.0 46 46 14 21 31.0 SL 1 87 50 .650 1.56 1.30 120.0 40 156 40 16 24 86 28 .497 1.56 .50 45.0 90.0 22 45 22 4 SL 1 84 73.0 210.0 62 178 62 SL 26 1 84 .424 1.56 .85 18 48 84 129 .124 1.56 .37 230.7 1186.7 86 443 86 44 SL 1 2350.0 440.3 87 87 66 85 134 .066 1.56 .20 464 46 SL 1 72 285 72 29 SL 70 121 .058 1.56 .18 410.0 1626.7 1 70 SL Totals 8 76 38 6.072 12.50 7.64 57.1 233.5 436 1,784 436 178 139 501 139 ΑL 10 4 86 33 15.406 8.40 15.41 9.0 32.5 50 AL11 3 86 43 9.549 6.30 9.55 12.0 30.0 115 286 114 29 87 16.0 50.0 43 AL 12 1 47 2.675 2.10 2.67 43 134 13 | TC TS | STNDSUN | И | | | | | Stand | l Table | Summa | ıry | | | | | | |--|--|--------------------------------------|--|--|---|--|-------------------|-----------------------|--------------------------|---------------|-----------------------|-----------------------|---|---------------------------------------|----------------| | | | | | | | | Proje | ect | PROSP | | | | | - | | | T04N
Twp
04N | R08W
Rge
08W | | Trace | t
EAV | E2 | | Sype
1002 | | cres
9.90 | Plots 48 | Sample T | | T04N R
Page:
Date:
Time: | 08W S17 '
2
02/09/20
3:49:22 |)(| | Spc T | | Sample
Trees | FF
16' | Av
Ht
Tot | Trees/
Acre | BA/
Acre | Logs
Acre | Net | ge Log
Net
Bd.Ft. | Tons/
Acre | Net
Cu.Ft.
Acre | Net
Bd.Ft.
Acre | T e | otals
Cunits | MBF | | AL | Totals | 8 | 86 | 38 | 27.629 | 16.81 | 27.63 | 10.7 | 33.3 | | 296 | 921 | *************************************** | 296 | 92 | | CL
CL
CL | 18
20
24 | 1
1
1 | 81
81
82 | 95
88
96 | .472
.382
.265 | .83
.83
.83 | .94
.76
.53 | 29.0
36.5
58.0 | 95.0
120.0
135.0 | | 27
28
31 | 90
92
72 | | 27
28
31 | 9
9
7 | | CL
CL
CL | 26
27
60 | 2
1 | 81
81
80 | 109
101 | .452
.210
.042 | 1.67
.83
.83 | .90
.42
.04 | 73.2
68.5
600.0 | 245.0
240.0
2570.0 | | 66
29
25 | 221
101
109 | | 66
29
25 | 22
10
11 | | CL | Totals | 7 | 81 | | 1.823 | 5.83 | 3.60 | 57.3 | 189.8 | | 206 | 684 | | 206 | 68 | | SN
SN
SN
SN
SN
SN
SN
SN | 14
16
37
38
40
45
48
60
70 | 1
1
1
1
2
2
1
2 | 78
88
85
89
82
88
79
85
70 | 70
26
30
32
52
26
33
37 | 1.299
.995
.186
.176
.318
.252
.111
.141 | 1.39
1.39
1.39
2.78
2.78
1.39
2.78
1.39 | | | | | | | | | | | SN
Totals | Totals | 12
119 | 83
86 | | 3.530
80.963 | | 139.00 | 47.8. | 208.5 | | 6651 | 28,981 | | 6,644 | 2,895 | | TC PLOGSTVB | | Log Stock Ta | able - MBF | · | | |--|-------------------------|-------------------|-----------------|----------------------|----------------------------| | T04N R08W S17 Ty0002
T04N R08W S17 Ty0002
T04N R08W S17 Ty0001 | 4.90
99.90
142.70 | Project:
Acres | PROSP
247.50 | Page
Date
Time | 1
2/9/2008
3:36:56PM | | s | So G | r Log | Gross | Def | Net | % | | | Net Vol | ume by | Scaling | Dian | eter in I | nches | | | | |-------|------|-------|------------|-------|-------|------|-----|-----|---------|--------|---------|------|-----------|-------|-------|-------|-----------| | Ѕрр Т | | | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 1 | | | - | 20-23 | 24-29 | 30-39 40+ | | D | DO | CU 4 | 0 | 100.0 | | | | | | | | | | | | | | | D | DO | CU 6 | 58 | 100.0 | | | | | | | | | | | | | | | D | DO | CU 8 | 17 | 100.0 | | | | | | | | | | | | | · | | D | DO | CU 10 | 25 | 100.0 | | | | | | | | | | | | | | | D | DO | CU 12 | 15 | 100.0 | | | | | | | | | | | | | | | D | DO | CU 21 | 6 | 100.0 | | | | | | | | | | | | | | | D | DO | CU 35 | 25 | 100.0 | | | | | | | | | | | | | | | D | DO | CU 36 | 26 | 100.0 | | - | | | | | | | | | | | | | D | DO | 2S 16 | 19 | | 19 | .4 | | | | | | | | | 18 | 1 | | | D | DO | 2S 18 | 2 | | 2 | .0 | | | | | | 2 | | | | | | | D | DO | 2S 20 | 10 | | 10 | .2 | | | | | | 3 | 8 | | | | | | D | DO | 2S 22 | 19 | | 19 | .4 | | | | | | 0 | | | 19 | | | | D | DO | 2S 24 | 19 | | 19 | .4 | | | | | | 3 | 0 | 13 | 1 | 2 | | | D | DO | 2S 25 | 4 | | 4 | .1 | | | | | | 4 | | | | | | | D | DO | 2S 32 | 804 | 1.7 | 790 | 15.4 | | | | | 14 | 219 | 110 | 216 | 108 | 122 | 1 | | D | DO | 2S 40 | 2,708 | | 2,697 | 52.7 | | | | | 20 | 382 | 475 | 745 | 743 | 332 | | | D | DO | 3S 12 | 0 | | 0 | .0 | | • | | 0 | | | | | | | | | D | DO | 3S 15 | 0 | | 0 | .0 | | | | | | 0 | | | | | | | D | DO | 3S 16 | 20 | | 20 | .4 | | | 0 | 8 | 12 | | | | | | | | D | DO | 3S 18 | 3 | | 3 | .1 | | | 0 | | 0 | 2 | | | | | | | D | DO | 3S 20 | 6 | | 6 | .1 | | | 3 | | 3 | | | | | | | | D | DO | 3S 22 | 2 7 | | 7 | .1 | | | | 2 | 5 | 0 | | | | | | | D | DO | 3S 24 | 44 | | 44 | .9 | | | 3 | 23 | 18 | • | | | | | | | D | DO | 3S 25 | 3 | | 3 | .1 | | | | 3 | | | | | | | | | D | DO | 3S 26 | 7 | | 7 | .1 | | | 0 | 3 | 0 | 4 | | | | | | | D | DO | 3S 27 | 3 | | 3 | .1 | | | 3 | 0 | | | | | | | | | D | DO | 3S 28 | 18 | | 18 | .4 | | | 7 | 8 | 3 | | | | | | | | D | DO | 3S 29 | 0 | | 0 | .0 | | | | 0 | | | | | | | | | D | DO | 3S 30 | 25 | | 25 | .5 | | | 5 | 7 | 14 | | | | | | | | D | DO | 3S 31 | . 0 | | 0 | .0 | | | | | | 0 | | | | | | | D | DO | 3S 32 | 433 | 2.2 | 423 | 8.3 | | | 92 | 198 | 104 | 1 | | 29 | | | | | D | DO | 3S 34 | <u>ا</u> 4 | | 4 | .1 | | | | | 4 | | | | | | | | D | DO | 3S 35 | 5 5 | | 5 | .1 | | | 5 | | | | | | | | | | D | DO | 3S 36 | 25 | | 25 | .5 | | | | 11 | 0 | 13 | | | | | | | D | DO | 3S 38 | 33 | | 33 | .6 | | | 8 | | 25 | | | | | | | | D | DO | 38 39 | 5 | | 5 | .1 | | | | | | 5 | | | | | | | D | DO | | 1 | | 546 | l | | | 63 | 185 | 256 | 19 | 24 | | | | I | | TC PLOGSTVB | | Log Stock Table - MBF | | |--|-------------------------|--------------------------------|-------------------------------------| | T04N R08W S17 Ty0002
T04N R08W S17 Ty0002
T04N R08W S17 Ty0001 | 4.90
99.90
142.70 | Project: PROSP
Acres 247.50 | Page 2 Date 2/9/2008 Time 3:36:56PM | | s | | | Def Net | % | | | | | | | <u>eter in I</u> | | r . | | · | | |-------|-----------|-------|-----------|------|-------|-----|-----|-----|-------|-------|------------------|-------|---------|------|-------|-----| | Spp T | rt de Len | MBF | % MBF | Spc | 2-3 4 | l-5 | 6-7 | 8-9 | 10-11 | 12-13 | 14-15 | 16-19 | 20-23 2 | 4-29 | 30-39 | 40+ | | D | DO 4S 13 | 0 | 0 | .0 | | | | 0 | | | | | | | | | | D | DO 4S 14 | j | 18 | .4 | | | 17 | 1 | | | | | | | | | | D | DO 4S 15 | 1 | 1 | l . | | | | 1 | | | | | | | | | | D | DO 4S 16 | 53 | 53 | 1.0 | | | 47 | . 6 | | | | | | | | | | D | DO 4S 17 | 0 | 0 | .0 | | | | 0 | | | | | | | | | | D | DO 4S 18 | 15 | 15 | .3 | | | 11 | 4 | | | | | | | | | | D | DO 4S 20 | 17 | 17 | .3 | | | 10 | 6 | | | | | | | | | | D | DO 4S 22 | 17 | 17 | .3 | | | 15 | 2 | | | | | | | | | | D | DO 4S 24 | 23 | 23 | .5 | | | 15 | 8 | | | | | | | | | | D | DO 4S 26 | 6 | 6 | .1 | | | 6 | | | | | | | | | | | D | DO 4S 28 | 12 | 12 | .2 | | | 12 | | | | | | | | | | | D | DO 4S 30 | 9 | 9 | .2 | | | 9 | | | | | | | | | | | D | DO 4S 32 | 1 | 1 | .0 | | | 1 | | | | | | | | | | | D | DO 4S 36 | 11 | 11 | .2 | | | 11
 | | | | | | | | | | D | DO SM 24 | 28 | 8.0 26 | .5 | | | | | | | | | | 26 | | | | D | DO SM 32 | 133 | 1.6 131 | 2.6 | | | | | | | | | 99 | 31 | | | | D | DO SM 40 | 37 | 37 | .7 | | | | | | | | | 37 | | | | | D | Totals | 5,330 | 4.0 5,116 | 62.5 | | | 344 | 476 | 479 | 658 | 616 | 1003 | 1025 | 515 | 1 | | | Н | DO CU 6 | 8 | 100.0 | | | | | | | | | | | | | | | Н | DO CU 8 | 18 | 100.0 | | | | | | | | | | | | | | | Н | DO CU 10 | 16 | 100.0 | | | | | | | | | | [| | | | | H | DO CU 12 | 19 | 100.0 | | | | | | | | | | | | | | | Н | DO CU 16 | 26 | 100.0 | | | | | | | | | | | | | | | H | DO CU 20 | 33 | 100.0 | 1 | | | | | | | | | | | | | | Н | DO CU 30 | 47 | 100.0 | | | | | | | | | | | | | | | Н | DO 2S 20 | 7 | 7 | .5 | | | | | | | 7 | | | | | | | Н | DO 2S 32 | 93 | 92 | 6.0 | | | | | 1 | 69 | 1 | 21 | 1 | | | | | H | DO 2S 40 | 1,086 | 1,083 | 70.1 | | | | | | 168 | 142 | 388 | 286 | 99 | | | | H | DO 3S 17 | 4 | 4 | .2 | | | | | | 4 | | | | | | | | Н | DO 3S 18 | l . | 7 | .5 | ŀ | | | 3 | 5 | | | | | | | | | Н | DO 3S 20 | 1 | 6 | 1 | 1 | | 2 | | 5 | | | | | | | | | Н | DO 3S 24 | | 2 | 1 | 1 | | | 2 | | | | | | | | | | Н | DO 3S 28 | | 30 | | | | | 16 | | 14 | | | | | | | | Н | DO 38 30 | | 25 | 1.6 | | | 7 | 18 | 1 | | | | | | | | | Н | DO 3S 32 | | 33 | 2.2 | | | 9 | 0 | 24 | | | | | | | | | Н | DO 3S 34 | | 7 | | 1 | | | | 7 | | | | | | | | | TC PLC | OGSTVB | | | | | Log | Stock | Table | - MB | F | | | | | | | | | |--------|----------------------------------|----------|-------|-------------------|----------|--------------|-------|-------|------------|--------|------------------------|------|-------|-------|---|-------|-----------------------|-----| | T04N F | R08W S17
R08W S17
R08W S17 | Ty000 |)2 99 | .90
.90
.70 | , | Proj
Acre | | PRO | OSP
247 | .50 | 3 * VV P + ++++ | | | | Page
Date
Time | 2/9 | 3
)/2008
36:56P | 'M | | S | | Log | | Def | Net | % | | | | | Scaling | | | | | | 1 | | | Spp T | - | Len | MBF | % | MBF | Spc | 2-3 | 4-5 | 6-7 | 8-9 | 10-11 1 | 2-13 | 14-15 | 16-19 | 20-23 | 24-29 | 30-39 | 40+ | | H | DO 3S
DO 3S | | | | 13
9 | .8
.6 | | | 12 | | 9 | | | | | | | | | н | DO 3S | | | | 169 | 10.9 | | | 27 | 17 | 25 | 11 | | 35 | | 55 | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | H | DO 4S | | 16 | | 16 | 1.0 | | | 1 | 15 | | | | | | | | | | H | DO 4S | | | | 5 | .3 | | | 3 | 2 | | | | | | | | | | H | DO 4S | | | | 9 | .6 | | | 5 | 4 | | | | | | | | | | H
H | DO 4S
DO 4S | | | | 18 | 1.2 | | | 15 | 3 | | | | | | | | | | н | DO 4S
DO 4S | 20
21 | 3 2 | | 3 2 | .2
.1 | | | | 3
2 | | | | | | | | | | H | DO 4S | | 0 | | 0 | .0 | | | 0 | 2 | | | | | | | | | | Н | DO 4S | | | | o | .0 | | | 0 | | | | | | | | | | | H | DO 4S | 31 | 4 | | 4 | .3 | | | 4 | | | | | | | | | | | н | DO 4S | 40 | 1 | | 1 | .0 | | | 1 | | | | | | | | | | | H | Total | s | 1,715 | 9.9 | 1,546 | 18.9 | | | 86 | 84 | 76 | 265 | 149 | 444 | 287 | 154 | | | | S | DO CL | | | 100.0 | -,* . * | -0.5 | | | | | | | 117 | | 207 | 134 | | | | s | DO CL | | · | 100.0 | | | | | | | | | | | | | | | | s | DO 2S | 40 | 152 | | 152 | 51.4 | | | | | | | 88 | 58 | | 1 | 2 | 2 | | s | DO 3S | 16 | 0 | | 0 | .0 | | | | | | | | 0 | <u> </u> | | | | | s | DO 3S | 22 | 0 | | 0 | .0 | | | | | | | | 0 | | | | | | s | DO 3S | 26 | 0 | | 0 | .1 | | | | | | | | | 0 | | | | | s. | DO 3S | 28 | 0 | | 0 | .0 | | | | 0 | | | | | | | | | | s | DO 3S | 32 | 83 | | 83 | 27.9 | | | 19 | 7 | | | | | 57 | | | | | s | DO 3S | 40 | 44 | | 44 | 14.9 | | | | | | 7 | | | | 37 | | | | s | DO 4S | 16 | 0 | | 0 | .1 | | 0 | | | | | | | *************************************** | | | | | s | DO 4S | 20 | 1 | | 1 | .2 | | | | | | | | 1 | | | | | | s | DO 4S | 22 | 0 | | 0 | .0 | | | 0 | | | | | | | | | | | S | DO 4S | 24 | 15 | | 15 | 4.9 | | | 14 | | 0 | | | | | | | | | s | DO 4S | 40 | 1 | | 1 | .3 | | | | | | 1 | | | | | | | | s | Total | s | 304 | 2.8 | 296 | 3.6 | | 0 | 33 | 7 | 0 | 8 | 88 | 59 | 57 | 38 | 2 | 2 | | A | DO CU | J 3 | 6 | 100.0 | | **** | | | | | | | | | | | | | | A | DO CL | J 5 | 0 | 100.0 | | | | | | | | | | | | | | | | A | DO CU | J 6 | 7 | 100.0 | | | | | | | | | | | | | | | | A | DO CU | | 8 | 100.0 | | | | | | | | | | | | | | | | A | DO CU | | | 100.0 | | | | | | | | | | | | | | | | Α . | DO CU | 16 | 23 | 100.0 | <u> </u> | | | | | | | | | | | | | | | TC I | PLO | GSTVB | | | | | | Log | Stock | Table | - MB | F | | | | | | | | | |-------|--------|-------------------------------|------|------------|--------------|-------------------|------------|--------------|-------|-----------------|-----------------|---------------|------------------|------|---------|-----------------|----------------------|-------|-----------------------|-----| | T04 | N R | .08W S1
.08W S1
.08W S1 | 7 T | y000 | 2 99 | .90
.90
.70 | | Proj
Acre | | PRO | OSP
247 | .50 | | | | | Page
Date
Time | 2/9 | 4
/2008
36:56Pl | м | | Spp | S
T | So Gr
rt de | | Log
Len | Gross
MBF | Def
% | Net
MBF | %
Spc | 2-3 | <u>I</u>
4-5 | iet Volu
6-7 | ıme by
8-9 | Scaling
10-11 | | eter in | Inches
16-19 | 20-23 | 24-29 | 30-39 4 | 40+ | | A | | DO C | R | 8 | 6 | | 6 | .5 | | | | | | 6 | | | | | | | | A | | DO C | R | 10 | 20 | | 20 | | | | 3 | | | | | 8 | | | 10 | | | Α | | DO C | R | 12 | 2 | | 2 | .2 | | | | | 2 | | | | | | | | | A | | DO C | R | 16 | 56 | 2.8 | 55 | 4.5 | | | 31 | 3 | | 2 | 19 | | | | | | | A | | DO C | R | 20 | 74 | | 74 | 6.0 | | | 43 | 3 | 21 | 8 | | | | | | | | Α | | DO C | R | 24 | 58 | | 58 | 4.7 | | | 34 | 2 | 7 | | 15 | | | | | | | Α | | DO C | R | 26 | 10 | | 10 | .8 | | • | | 10 | | | | | | | | | | Α | | DO C | R | 28 | 4 | | 4 | .3 | | | 1 | | 3 | | | | | | | | | A | | DO C | R | 30 | 172 | | 172 | 14.0 | | | 13 | 33 | 41 | 27 | 30 | 28 | | | | | | Α | | DO C | R | 32 | 487 | | 487 | 39.7 | | | 78 | 94 | 113 | 84 | 15 | 74 | 31 | | | | | Α | | DO C | R | 36 | 21 | | 21 | 1.7 | | | 6 | 16 | | | | | | | | | | A | | DO C | R | 40 | 318 | | 317 | 25.9 | | | 52 | 86 | 111 | 50 | 18 | | | | | | | A | | Tota | als | | 1,287 | 4.6 | 1,227 | 15.0 | | | 261 | 246 | 297 | 177 | 97 | 110 | 31 | | 10 | | | Total | | All Spe | cies | | 8,636 | 5.2 | 8,185 | 100.0 | | 0 | 724 | 812 | 853 | 1107 | 951 | 1616 | 1400 | 707 | 13 | 2 | | TC TST | ATS | | | | ST.
PROJEC | ATIST | ICS
PROSP | | | PAGE
DATE 2 | 1
2/9/2008 | |---------------|---------------|--------------------|-------------------------------|--------------|----------------------|------------|---------------------|---------------------|-------------------|----------------|---------------| | TWP | RGE | SECT | TRACT | | TYPE | AC | RES | PLOTS | TREES | CuFt | BdFt | | 04N | 08W | 17 | A4LEAVE2 | | 0002 | | 99.90 | 48 | 216 | 1 | W | | | | | | | TREES | | ESTIMATED
TOTAL | S | PERCENT
SAMPLE | | | | | | PLOTS | TREES | | PER PLOT | | TREES | Т | REES | Tan the same | | | TOTA | | 48 | | | 4.5 | | | | | | | | CRUI | SE
COUNT | 27 | 119 | | 4.4 | | 8,088 | | 1.5 | | | | REFO | | | | | | | | | | | | | COUN | | 21 | 90 | | 4.3 | | | | | | _ | | BLAN | IKS | | | | | | | , | 5% 0- | 51 - 16 | 30) | | 100 % | Ď | | | | | | | J~ 6. | 2/10 | SOFT | | | | | | | STA | ND SUMN | iary s | OI / | / | | | | | | | SAMPLE | E TREES | AVG | BOLE | REL | BASAL / | GROSS | NET | GROSS | NET | | | | TREES | /ACRE | DBH | LEN | DĚŊ | AREA / | BF/AC | BF/AC | CF/AC | CF/AC | | | GLEAV | | 71 30.0 | 25.0 | 96 | 130 | 102.5 | 22,925 | 22,308 | 4,968 | | | HEMI | LEAV
RLEAV | | 13 12.0
8 27.6 | 18.6
10.6 | 61
26 | -32 | 22.5 | 3,442 | 3,283 | 852 | | | SNAG | | | 6 27.6
12 3.5 | 29.4 | 26
 55 | 30 | 16.8
16.7 | 921
654 | 921 | 296
161 | 296 | | SPRU | | | 8 6.1 | 19.4 | 32 | 18 | 12.5 | 1,837 | 1,784 | 442 | 436 | | CEDL | EAV | | 7 1.8 | 24.2 | 70 | 7 | 5.8 | 703 | 684 | 206 | 206 | | TOTA | AL | 11 | 9 <u>81.0</u>
77 i | 20.0 | 60 | | 7) 176.8/60 | 30,481 | 28,981 | 6,926 | 6,651 | | | 68.1 | TIMES O | OF THE SAMP:
UT OF 100 THE | LE | WILL BE | WITHIN | 7600
THE SAMPL | %
E ERROR | Z:
 | 17/630 | = 34% | | | 68.1 % | CO | | | | E TREES | - BF | # | OF TREES | REQ. | INF. POP. | | SD: | 1.0 | | R.% S.E.% | L | OW | AVG | HIGH | | 5 | 10 | 15 | | HEMI | GLEAV | 50
104 | | | 923
348 | 982
498 | 1,040
647 | | | | | | | RLEAV | 22 | | | 31 | 34 | 37 | | | | | | SNAG | } | | | | | | | | | | | | | CELV | 133 | | | ·= | 2,058 | 3,091 | | | | | | CEDL
TOTA | | 125
<i>115.</i> | | | 332
734 | 676
820 | 1,020
<i>907</i> | | 533 | 133 | 59 | | | | | | | | | 907 | | | | | | | 68.1 % | CO1 | | т. | TREES/A | | шоп | # | OF PLOTS | | INF. POP. | | | 1.0
GLEAV | 76 | R.% S.E.%
5.0 11.0 | | OW
27 | AVG
30 | HIGH
33 | | 5 | 10 | 15 | | HEMI | | 154 | | | 9 | 12 | 15 | | | | | | ALDR | RLEAV | 187 | | | 20 | 28 | 35 | | | | | | SNAG | | 228 | | | 2 | 4 | 5 | | | | | | SPRU-
CEDL | | 290
676 | | | 4
0 | 6
2 | 9
4 | | | | | | TOTA | | 58. | | | 7 <i>4</i> / | 8 <i>I</i> | 88 | | 138 | 34 | 15 | | | 68.1 % | | EFF | | | AREA/A | | | OF PLOTS | | INF. POP. | | SD: | 1.0 | | R.% S.E.% | L | | AVG | HIGH | # | 5 | 10 | INF. POP. | | | GLEAV | 64 | .9 9.4 | | 93 | 103 | 112 | | | | | | HEMI | | 150 | | | 18 | 23 | 27 | | | | | | | LEAV | 189 | | | 12 | 17 | 21 | | | | | | SNAG
SPRU | | 184
220 | | | 12
9 | 17
13 | 21
16 | | | | | | CEDL | | 600 | | | 1 | 6 | 11 | | | | | | TOTA | | 24. | | | 171 | 177 | 183 | | 23 | 6 | 3 | | CL: | 68.1 % | CO | EFF | | NET BF/ | ACRE | | # | OF PLOTS | REO. | INF. POP. | | SD: | 1.0 | VA | R.% S.E.% | L | | AVG | HIGH | | 5 | 10 | 15 | | DOUG | GLEAV | 64 | .3 9.3 | | 0,238 2 | 22,308 | 24,378 | | | | | | HEMI | | 144 | | | | 3,283 | 3,967 | | | | | | ALDR
SNAG | RLEAV | 183 | 5.0 26.4 | | 678 | 921 | 1,164 | | | | | | SNAG | J | | |
| | | | | | | | | TC TST | ATS | | | | | STATI
JECT | STICS
PROSP | | | PAGE
DATE 2 | 2
2/9/2008 | |----------------------|---------------|-------------------------|-----------|---------------------|-------------------------------|-------------------------------|----------------|-------------|---------------|----------------|---------------| | TWP
<u>04N</u> | RGE
08W | SECT
17 | TRAC | T
AVE2 | TYP)
0002 | | ACRES
99.90 | PLOTS
48 | TREES
216 | CuFt | BdFt
W | | CL:
SD: | 68.1 %
1.0 | CO.
VA | EFF
R. | S.E.% | NET
LOW | BF/ACR
AVG | _ | | # OF PLO
5 | TS REQ. | INF. POP | | SPRU
CEDL
TOTA | | 251
590
<i>33</i> |).4 | 36.2
85.1
4.8 | 1,138
102
<i>27,588</i> | 1,784
684
<i>28,981</i> | 1,267 | - | 44 | 11 | 5 |